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Abstract 21 

Climate projections are being used for decision-making related to climate mitigation and 22 

adaptation and as inputs for impacts modeling related to climate change. The plethora of 23 

available projections presents end users with the challenge of how to select climate projections, 24 

known as the “practitioner’s dilemma”.  In addition, if an end-user determines that existing 25 

projections cannot be used, then they face the additional challenge of producing climate 26 

projections for their region that are useful for their needs. We present a methodology with novel 27 

features to address the “practitioner’s dilemma” for generating downscaled climate projections 28 

for specific applications. We use the Edwards Aquifer region (EAR) in south-central Texas to 29 

demonstrate a process to select a subset of global climate models from both the CMIP5 and 30 

CMIP6 ensembles, followed by downscaling and verification of the accuracy of downscaled data 31 

against historical data. The results show that average precipitation changes range from a decrease 32 

of 10.4 mm to an increase of 25.6 mm, average temperature increases from 2.0°C to 4.3°C, and 33 

the number of days exceeding 37.8°C (100°F) increase by 35 to 70 days annually by the end of 34 

century. The findings enhance our understanding of the potential impacts of climate change on 35 

the EAR, essential for developing effective regional management strategies. Additionally, the 36 

results provide valuable scenario-based projected data to be used for groundwater and spring 37 

flow modeling and present a clearly documented example addressing the “practitioner’s 38 

dilemma” in the EAR. 39 

 40 

Plain Language Summary 41 

Groundwater, constituting over one-third of global water resources, is crucial for sustaining 42 

ecosystems, agriculture, and drinking water supplies. In the face of climate change, rising 43 

temperatures and shifting precipitation patterns are anticipated to diminish the availability of 44 

groundwater for both societal and ecological requirements. Regional managers, in preparing for 45 

these changes, need localized climate projections for effective planning. However, the abundance 46 

of available climate projections poses a significant challenge for decision-makers in climate 47 

adaptation, known as the ‘practitioner’s dilemma’. This dilemma, though widely acknowledged, 48 

lacks a standardized solution. Our paper introduces a methodology to navigate this challenge, 49 

specifically tailored to the needs of the Edwards Aquifer Authority. This authority is actively 50 

engaged in implementing protection and habitat conservation plans to alleviate stress on 51 

groundwater and major springs in the Edwards Aquifer Region, located in south-central Texas. 52 

Our projections indicate that rising temperatures are likely to increase evapotranspiration, 53 

thereby exacerbating the strain on groundwater resources in this region as climate conditions 54 

evolve. Furthermore, our approach offers a customizable approach to ‘the practitioner’s 55 

dilemma’, potentially serving as a model for other decision-makers in the United States to 56 

effectively utilize climate projections in their strategic planning. 57 

 58 

1 Introduction 59 

More than one-third of global water supplies emanate from groundwater (Famiglietti, 60 

2014), which is indispensable for human health, ecosystems, and energy and food security 61 

(Giordano, 2009). Groundwater plays a critical role in meeting consumptive water use needs and 62 

sustaining ecology, especially when surface water resources are scarce. Nearly 70% of 63 
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groundwater withdrawals have been allocated to sustain agricultural production worldwide 64 

(Margat and Gun 2013; Rosegrant et al. 2009).  In the United States, groundwater provides about 65 

40% of water for agriculture and domestic supplies  (Lall et al., 2018; Russo & Lall, 2017). The 66 

intensive use of groundwater, particularly for irrigation, has caused groundwater overdraft in 67 

some regions when withdrawal rates exceeded recharge rates (Ferguson & Gleeson, 2012; Hugo 68 

A Loáiciga, 2009; McCabe & Wolock, 2016; Siebert et al., 2010). Additional stressors may 69 

include higher pumping rates driven by population growth and socioeconomic developments that 70 

could exacerbate groundwater depletion (Costantini et al., 2023; Shaabani et al., 2023; Wu et al., 71 

2020).  Elevated temperatures and shifts in precipitation patterns resulting from climate change 72 

could increase evapotranspiration and affect availability of recharge, leading to greater depletion 73 

of groundwater in some groundwater basins (Condon et al., 2020). Conversely, these changes 74 

could result in increased flooding and added recharge in other groundwater basins (Costantini et 75 

al., 2023). Thus, region-specific climate change assessments are needed to effectively manage 76 

future groundwater sustainability.  77 

At global and continental scales, most climate projections use output from global climate 78 

models (GCMs). However, regional and local climates are not well represented by GCMs due to 79 

their coarse resolution (≥ 100km, Rummukainen 2010). Statistical downscaling techniques can 80 

translate the climate response simulated by GCMs to smaller spatial scales, reducing biases and 81 

adding information for decision makers (Rummukainen, 2016; Tabari et al. 2016). In addition, 82 

the use of statistical downscaling has allowed for GCM projections to be incorporated in impact 83 

assessment analyses. These assessments include studies that examined impacts to groundwater 84 

and aquifers (e.g. Scibek and Allen, 2006; Gordu and Nachabe, 2023), streamflow (e.g. Neves et 85 

al. 2020), aquatic ecosystems and species (e.g. Keller et al. 2022),  and water resources, quality, 86 

and security (Bhatt et al., 2023; Fu et al., 2022; Jaramillo & Nazemi, 2018).  In a recent study, 87 

Chakraborty et al. (2021) assessed the impacts of potential future climates on groundwater levels 88 

in the Edwards Aquifer using MACA downscaled projected climatic data from CMIP5. 89 

However, MACA-downscaled datasets were developed for much larger areas of the United 90 

States at coarser spatial resolution, which presents a challenge in accurately representing regional 91 

climatic characteristics (Lall et al., 2018). 92 

The “practitioner’s dilemma” is not the lack of available data and projections, but the 93 

challenge of choosing and using projections wisely in regional decision making (Barsugli et al., 94 

2013) and each of the aforementioned studies grappled with this challenge. While the 95 

“practitioner’s dilemma” is a well-recognized challenge to using downscaled climate projections, 96 

there are no standard practices defined to handle that challenge, though there are studies building 97 

toward that standardization (e.g. Jagannathan et al. 2020, 2021, 2023; Maraun 2023). The 98 

“practitioner’s dilemma” traditionally focuses on selecting from pre-existing datasets but not on 99 

the case when projections are needed, and pre-existing projections do not meet those needs. This 100 

study contributes to addressing the “practitioner’s dilemma” through a presented approach to 101 

selecting GCMs and downscaling them for the Edwards Aquifer Region (EAR). 102 

The Edwards Aquifer in south central Texas is a karst aquifer that is the primary drinking 103 

water source for more than two million people and provides important environmental flows, 104 

sustaining habitats for several threatened/endangered species at two major spring systems. The 105 

sustainability of the Edwards Aquifer depends on a delicate balance between recharge, 106 

withdrawals, spring flow, and runoff, all of which can be affected by climate change. Several 107 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-extraction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-extraction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-extraction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-extraction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-extraction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-extraction
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studies have examined historical and projected future climate effects on the sustainability of 108 

water resources in south central Texas. Using earlier generations of GCMs, Loaiciga et al (2000) 109 

noted that without considering variations in aquifer recharge and the implementation of sound 110 

pumping strategies, the water resources of the Edwards Aquifer could be severely impacted 111 

under future warmer climates. Based on projected temperature increases and projected decreases 112 

in spring flow for the region, Devitt et al. (2019) concluded that groundwater-bound species in 113 

the Edwards Aquifer system are at a high risk of extinction within the next century. Using 114 

projected climate datasets for the Edwards Aquifer region, statistically downscaled from CMIP5 115 

models using the Multivariate Adaptive Constructed Analogs (MACA, Abatzoglou and Brown 116 

2012), Chakraborty et al. (2021) concluded that the combined effects of increased 117 

evapotranspiration, decreased soil moisture, and reduced diffuse recharge due to projected higher 118 

future temperatures could intensify hydrological droughts and reduce groundwater levels, 119 

exacerbating groundwater sustainability challenges. The Edwards Aquifer Authority (EAA) has 120 

been implementing several aquifer protection programs to support established habitat 121 

conservation plans and to mitigate stress on the groundwater and major springs that provide 122 

habitat for threatened and endangered species (Committee to Review the Edwards Aquifer 123 

Habitat Conservation Plan, Phase 3 et al., 2018). Accurate assessment of the effectiveness of 124 

these protection programs under future climate conditions and regional socioeconomic 125 

developments depends on the careful selection and creation of climate projections, which reflects 126 

the EAA’s own “practitioner’s dilemma”. 127 

Typically, the ‘practitioner’s dilemma’ pertains to selecting from existing downscaled 128 

climate projections. However, an added layer of the ‘practitioner’s dilemma’ arises when 129 

existing projections do not meet user needs. In such cases, developing new projections becomes 130 

necessary, as exemplified by the requirements of the EAA. However, this secondary challenge is 131 

often overlooked in the literature and was not addressed by Barsugli et al. (2013). We note the 132 

reasons for creating fine resolution (~ 1km) projections in this study rather than relying on other 133 

datasets such as the CMIP6-LOCA2 (Pierce et al., 2023) or the CMIP6-STAR (Hayhoe et al., 134 

2023), contributing to the literature regarding the choice between utilizing existing data versus 135 

creating new datasets. The groundwater flow models developed and used by the EAA to simulate 136 

and forecast groundwater levels and spring flow under current and projected climate conditions 137 

rely on gridded data at a spatial resolution of 0.4 km. Such fine resolution is critical for 138 

accurately capturing spatiotemporal variations in mean and extreme climate events and their 139 

combined effects with spatial variations in hydrogeologic and topographic features (Figure S1a) 140 

on aquifer recharge and regional groundwater flow patterns. Specifically, the fine-resolution 141 

representation of areas with heavy storms and extreme precipitation events along ephemeral and 142 

perennial streams is crucial because extreme precipitation-driven focused recharge along discrete 143 

features (e.g., sinkholes) and dissolution along faults and fractures within stream channels are 144 

more significant for aquifer recharge than gravity-driven dispersed recharge over inter-stream 145 

areas in the EAR (Sun et al., 2020). Raw GCM data are unable to capture these features (Figure 146 

S1b). Other downscaled projections, including CMIP6-LOCA2 and CMIP6-STAR in the 147 

literature with, have a resolution from 4-6km, which also does not capture these critical features 148 

(Figure S1c). Therefore, custom downscaling to 1km was deemed necessary for this project and 149 

successfully captured the topographic effects in the EAR (Figure S1d). The decision to create 150 

custom 1km projections aligns with previous literature suggesting that downscaled resolution 151 

finer than 4km are required for accurately assessing climate impacts on vegetation dynamics in 152 

complex topography (e.g. Franklin et al., 2013). 153 
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This study presents an approach to addressing the “practitioner’s dilemma” for the EAA 154 

as our contribution to the larger discussion regarding the development and use of decision-155 

relevant climate projections. In addition, this study generates customized downscaled climate 156 

projections for the Edwards Aquifer Region (hereafter EAR) of south-central Texas to facilitate 157 

the assessment of the potential impacts of climate change on groundwater levels and spring 158 

flows. The fine resolution (~ 1km) downscaled projections are specifically designed to capture 159 

the historical climate of the region and account for multiple known sources of uncertainty in the 160 

climate projections (Crosbie et al., 2011; Lafferty & Sriver, 2023; Wootten et al., 2017). The 161 

following sections describe the approach to GCM selection and downscaling and the insights for 162 

future impacts modeling efforts, essential for evaluating the long-term sustainability of the EAR 163 

amid a changing climate. 164 

 165 

2 Region, Data, and Methods 166 

2.1 Study Region 167 

The Edwards Aquifer is characterized by faulted and fractured carbonate rocks, 168 

heterogeneous hydrogeological properties and flow pathways, conduit flow, presence of 169 

sinkholes, sinking streams, caves, ecologically rich springs, and highly productive water wells. 170 

The San Antonio segment of the Edwards Aquifer system covers an area of approximately 171 

14,200 km
2
 (5,490 mi

2
) and is divided into three distinct hydrogeological zones from north to 172 

south, including the contributing zone, recharge zone, and the artesian zone, as shown in Figure 173 

1 (Lindgren et al., 2004; Schindel, 2019). Spring flow and runoff in the contributing zone feed 174 

streams that cross the outcrop of the Edwards Limestone in the recharge zone. Faulting 175 

(Balcones Faut Zone), fractures, and karst features facilitate vertical downward percolation of 176 

surface water, recharging the aquifer. The artesian zone of the aquifer, where most of the large 177 

production wells are located, is confined and fully saturated. The Edwards Aquifer is the primary 178 

water source for much of the area, including the City of San Antonio and surrounding 179 

communities. The aquifer also provides habitat for several threatened and endangered 180 

groundwater-bound endemic species such as the Texas blind salamander and Fountain darter 181 

(Committee to Review the Edwards Aquifer Habitat Conservation Plan, Phase 3, 2018) at the 182 

major springs in the region, including Comal Springs and San Marcos Springs. The EAR is in the 183 

southern tip of the Southern Great Plains (SGP) region of the United States and has a distinct 184 

precipitation gradient from east to west (Figure 1). The domain for the downscaling covers the 185 

EAR from 28.75°N to 30.50°N and 100.75°W to 97.75°W. The entire SGP region is used for the 186 

evaluation and ensemble subset selection of the GCMs, as GCMs are more capable of 187 

representing physical processes on the scale of the SGP region and the continental United States 188 

than in the relatively smaller domain of the EAR.   189 

 190 

Figure 1. 1980-2014 climatology of average annual precipitation (P) across the Southern Great 191 

Plain region (left) and in the downscaling region (the Edwards Aquifer Region, right). 192 

 193 
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2.2 Observation and Global Climate Model Data 194 

The observation data used in this study is the Daymet version 4 (Thornton et al. 2022, 195 

hereafter Daymet) which provides gridded observations of daily Tmax, daily Tmin, and daily 196 

total P at ~1 km spatial resolution, starting January 1, 1980, across North America. The Daymet 197 

data were reprojected from their native map projection to a geographic projection using the 198 

functions available in the raster package (v 3.3-13) in R. Climate data is derived using 33 GCMs 199 

from the Coupled Model Intercomparison Project (CMIP) Phase 5 (CMIP5, Andrews et al. 2012) 200 

and 23 GCMs from Phase 6 (CMIP6, Eyring et al. 2016). The number of models used for 201 

downscaling was initially reduced to five each from CMIP5 and CMIP6 via the ensemble subset 202 

selection approach discussed in the next section. The list of models initially considered is 203 

provided in Table S1. 204 

2.3 Ensemble Subset Selection Approach 205 

The ensemble subset selection approach used in this study is based in part on the work of 206 

McSweeney et al. (2015) and Parding et al. (2020). The subset selection approach is described 207 

here with regards to its use to select a subset of models for statistical downscaling of daily high 208 

temperature (Tmax), daily low temperature (Tmin), and daily total precipitation (P) for the EAR.  209 

 210 

2.3.1 Data Preparation 211 

Several data preparation steps are implemented prior to starting the ensemble subset 212 

selection. First, for each GCM, the climatology of annual total P, annual average Tmax, and 213 

annual average Tmin are calculated for the respective historical periods of each ensemble (1980-214 

2005 for CMIP5 and 1980-2014 for CMIP6). Second, the climatology of all three variables from 215 

all models is interpolated using bilinear interpolation to the Daymet grid and cropped to the SGP 216 

region. Third, the first two steps are repeated to create the climatology of all three variables for a 217 

future period (2070-2099) under the RCP 8.5 for the CMIP5 ensemble and the SSP 5-8.5 for the 218 

CMIP6 ensemble. The choice to use the end-century and high emission scenarios for subset 219 

selection is based on maximizing the change signal and potential spread of the ensemble. Fourth, 220 

the projected change of each variable from each GCM in the SGP region is calculated using 221 

historical and future climatology. The historical climatology and projected change are used with 222 

the ensemble subset selection approach to identify a subset of five GCMs from both the CMIP5 223 

and CMIP6 ensembles that represent a range of future uncertainty while accurately representing 224 

the seasonality and magnitude of historical data for a region. Selection of a subset of models that 225 

meet specific performance criteria can reduce the computational burden needed to assess a 226 

multitude of models, especially given the often wide range of uncertainty across the full 227 

ensemble of model results, which can hinder effective decision making in assessing likelihood of 228 

future conditions. Recent literature suggests that some “hot-models” (those GCMs with a high 229 

equilibrium climate sensitivity [ECS]) should be removed from use (Hausfather et al. 2022). 230 

However, a GCM with a high ECS values does not automatically make it an outlier for regional 231 

projected changes, particularly when incorporated into an impact assessment (Rahimpour 232 

Asenjan et al. 2023). As such, we retained all GCMs for this subset selection, regardless of their 233 

ECS value.  234 
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2.3.2 Historical Error Calculation 235 

The first component of the ensemble subset selection approach is to determine the error 236 

of the historical climatology of all possible combinations of five model ensemble subsets. For 237 

this first component, the approach determines which ensemble subset minimizes the historical 238 

error. For each possible ensemble subset and a given variable, the historical climatology for the 239 

five GCMs are averaged together to produce a subset mean climatology. For each possible 240 

subset, the historical error is the normalized root mean square error (NRMSE) of the subset mean 241 

climatology compared to the Daymet observations: 242 

𝑁𝑅𝑀𝑆𝐸𝑠 =
√∑ (𝑀𝑖−𝑂𝑖)

2𝑁
𝑖=1

√𝑁𝜎𝑂
     (2) 243 

where M is the subset mean climatology, and O is the historical climatology from Daymet. The 244 

RMSE of ensemble subset s is determined as the square root of the mean squared errors from 245 

each of the i
th

 grid cells, where N is the total number of grid cells. The NRMSE of subset s is 246 

calculated as the RMSE of subset s divided by the standard deviation (𝜎) of the historical 247 

observations. The resulting NRMSE reflects the skill of the ensemble subset for a given variable 248 

across the SGP, which is in line with scale of information provided by GCMs. 249 

2.3.3 Future Spread Calculation 250 

The second component of the ensemble subset selection approach is to determine how 251 

much of the future spread in the ensemble is captured by the subset. This is accomplished using 252 

the fractional range coverage (FRC) calculated similarly to that described by McSweeney et al. 253 

(2015) and Parding et al. (2020). At each grid cell in the SGP region, the FRC is calculated by 254 

𝐹𝑅𝐶𝑠,𝑖 =
(𝑚𝑎𝑥𝑠,𝑖−𝑚𝑖𝑛𝑠,𝑖)

(𝑚𝑎𝑥𝑓𝑢𝑙𝑙,𝑖−𝑚𝑖𝑛𝑓𝑢𝑙𝑙,𝑖)
      (3) 255 

where s is the ensemble subset, i is the grid cell, and max and min are the maximum and 256 

minimum projected change, respectively. The numerator of Equation (3) is the range of projected 257 

change from a given subset s for grid cell i. The denominator of Equation (3) is the range 258 

projected change for grid cell i from the full ensemble. The FRC across all grid cells are 259 

averaged together to create a single FRC value for ensemble subset s via  260 

𝐹𝑅𝐶𝑠 =
∑ 𝐹𝑅𝐶𝑠,𝑖
𝑁
𝑖=1

𝑁
    (4) 261 

The NRMSE and FRC reflect the skill and spread, respectively, of each individual 262 

ensemble subset. Like the NRMSE calculation, the FRC is aggregated to one value for the SGP to 263 

reflect the ability of the subset to capture the spread of ensemble changes across the larger 264 

region, which is more in line with the scale of information provided by GCMs. 265 

2.3.4 Multivariate Combination and Ensemble Subset Selection 266 

The final component of the ensemble subset selection approach focuses on determining 267 

which ensemble subset minimizes the NRMSE and maximizes the FRC. Ideally, the minimum 268 

NRMSE is zero, representing a subset that perfectly captures the historical climatology, and the 269 

maximum FRC is one, representing a subset that has the same future spread as the full ensemble. 270 
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Therefore, the subset selection approach calculates the Euclidean distance (D) of each subset 271 

from the ideal situation using the NRMSE and FRC values from each subset using 272 

𝐷𝑠 = √(𝑁𝑅𝑀𝑆𝐸𝑠 − 0)2 + (𝐹𝑅𝐶𝑠 − 1)2     (5) 273 

In this study, we implemented the multivariate subset selection approach. The value of D is 274 

calculated for each subset s and variable v. Following a similar approach to Sanderson et al. 275 

(2017), the values of D for a given subset s over multiple variables can be combined using linear 276 

combination by 277 

Δ𝑠 = ∑
𝐷𝑠,𝑣

𝑉
𝑉
𝑣=1       (6) 278 

where Δ𝑠 is the multivariate distance for subset s, v is the climate variable, V is the total 279 

number of climate variables, and D is the Euclidean distance for a given variable v and subset s. 280 

In the multivariate selection approach, the subset with the minimum multivariate distance is 281 

used. We applied the approach detailed in this section separately for the CMIP5 and CMIP6 282 

ensembles, resulting in two separate five member ensembles that are then statistically 283 

downscaled for the EAR. This final step represents a departure from the approach of Parding et 284 

al. (2020), which used skill scores and user-defined weights to rank individual GCMs, where this 285 

study uses a multivariate distance (Equation 6) to select a GCM subset to capture skill and spread 286 

for the SGP region. This larger region is the focus of subset selection to minimize the error of 287 

GCM representation of larger scale patterns that affect the EAR while capturing the spread of 288 

changes from the GCM ensemble. A subset of five GCMs from each ensemble was chosen in 289 

consultation with the EAA to limit computational demands for the subsequent use of the 290 

projections in groundwater and spring flow modeling. 291 

 292 

2.4 Downscaling Technique 293 

2.4.1 Equidistant Quantile Mapping (EDQM) and Equi-ratio Quantile Mapping (ERQM) 294 

The downscaling techniques used for statistical downscaling of climatic features from 295 

GCMs for the EAR are equidistant quantile mapping (EDQM) and its variant known as equi-296 

ratio quantile mapping (ERQM). We implemented these techniques for the EAR following the 297 

same procedures described by Wootten et al. (2020). The EDQM was used to produce 298 

downscaled projections of daily Tmax and Tmin. The ERQM was used to produce downscaled 299 

projections of daily total P. In addition, while the two techniques are subtlety different, they 300 

share the same basic procedure. As such, we refer to the downscaling and results from the 301 

downscaling procedure as EDQM in the results and discussion sections. 302 

2.4.1.1 Equidistant Quantile Mapping (EDQM) 303 

The EDQM approach, used for downscaling daily Tmax and Tmin, has been similarly 304 

applied in several other studies (Li et al. 2010; Cannon et al. 2015; Lanzante et al. 2019). For the 305 

downscaling in this study, we followed the procedure used in Dixon et al. (2020). The EDQM 306 

approach for downscaling daily Tmax and Tmin is mathematically equivalent to the quantile 307 

delta mapping (QDM, Cannon et al. 2015). The downscaling in this study makes uses of the 308 

implementation of EDQM available in the MBC R Package (GitHub - cran/MBC), which reflects 309 

https://github.com/cran/MBC


manuscript submitted to Earth’s Future 

 

the EDQM method created by Li et al. (2010). The calculation is summarized below with 310 

specific notes for its application in this study.  311 

The EDQM has four major steps. First, the cumulative distribution function (CDF) of the 312 

GCM-projected climatic feature values is determined for a given climatic variable, and then the 313 

corresponding quantile levels are computed by 314 

𝜏𝑚,𝑝 = 𝐹𝑚,𝑝(𝑥𝑚,𝑝)      (7) 315 

The second step is to calculate the change factor (Δ) between the simulated projected climatic 316 

feature values and the simulated historical climatic feature values from the GCMs at quantile 317 

levels by 318 

Δ𝑚 = 𝑥𝑚,𝑝 − 𝐹𝑚,ℎ
−1 (𝜏𝑚,𝑝)     (8) 319 

Third, the downscaled projected climatic feature values are determined by first estimating 320 

historical climatic feature values from the GCM-projected climatic feature values using the 321 

inverse CDF of the observed historical climatic feature values. Finally, the change factor, 322 

determined in Equation 8, is added to the estimated historical climatic feature values, as 323 

described below. 324 

𝑥̂𝑜:𝑚,ℎ:𝑝 = 𝐹𝑜,ℎ
−1(𝜏𝑚,𝑝)    (9) 325 

𝑥̂𝑜,𝑝 = 𝑥̂𝑜:𝑚,ℎ:𝑝 + Δ𝑚     (10) 326 

where m is the GCM-modeled value of the climate variable, p is the GCM-projected value of the 327 

climate variable, o is the observed historical value of the climate variable, h is the GCM-modeled 328 

historical value of the climate variable, 𝜏 is the quantile level, Fm,p is the CDF of the GCM-329 

modeled future variable, Fo,h is the CDF of the observed historical value of the variable, Δ𝑚 is 330 

the change factor, and 𝑥̂𝑜,𝑝 is the downscaled value of the target variable.  331 

In line with the previous work by Dixon et al (2020), we applied the EDQM using a 332 

monthly time window with a 2-week overlap. For example, the values of Δ𝑚 for July were 333 

calculated using the month of July, the final two weeks of June, and the first two weeks of 334 

August. The use of a monthly time window enables a more accurate representation of seasonal 335 

variability in the downscaled climatic features in the region. 336 

2.4.1.2 Equi-Ratio Quantile Mapping (ERQM) 337 

The ERQM is a variation of the EDQM that uses a multiplicative rather than an additive 338 

approach to determine and apply the change factors. The implementation used here is the same 339 

as in Dixon et al. (2020), Wootten et al. (2020), and Lanzante et al. (2021). The ERQM 340 

procedure is similar to the EDQM procedure except that Equations 8 and 10 are replaced by 341 

Δ𝑚 =
𝑥𝑚,𝑝

𝐹𝑚,ℎ
−1 (𝜏𝑚,𝑝)

     (11) 342 

𝑥̂𝑜:𝑝 = 𝑥̂𝑜:𝑚,ℎ:𝑝 ∗ Δ𝑚    (12) 343 
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The ERQM variation of EDQM is applied for downscaling daily P because the multiplicative 344 

change factor prevents the downscaled P from having negative values. We also applied the 345 

ERQM with seasonal time window, following the work of Wootten et al. (2020), in order to 346 

provide enough non-zero P days to construct a robust CDF. Prior to the execution of ERQM, a 347 

trace adjustment similar to Pierce et al. (2015) was applied to correct the wet-day fraction of the 348 

modeled precipitation data to match that of the Daymet observations. In addition, prior to 349 

implementing ERQM a cube root transformation was applied to precipitation to yield a more 350 

Gaussian distribution. The ERQM was performed on the transformed P data, and the reverse 351 

transformation was applied to the results of ERQM.   352 

2.4.2 Training Period and Output Resolution 353 

The training period for the statistical downscaling is different for the CMIP5 and CMIP6 354 

ensemble subsets. The Daymet data, available from 1980 onward, limits the training period for 355 

both ensembles. The respective GCM ensembles have different historical simulation periods. 356 

The historical simulation period for the CMIP5 and CMIP6 ensembles end in 2005 and 2014, 357 

respectively. Thus, for the CMIP5 ensemble, the training period is 1980-2005, while the training 358 

period for the CMIP6 ensemble is 1980-2014. The output resolution of the projections matches 359 

the resolution of the Daymet data used in training (~1 km). 360 

2.4.3 Future Pathways and Period 361 

Due to the slightly different training periods and the variations in emissions scenarios 362 

between CMIP5 and CMIP6, the future period between two ensembles differs. The future period 363 

of available downscaled projections using CMIP5 and CMIP6 GCMs is 2006-2099 and 2015-364 

2099, respectively. In this study, we used CMIP5 GCM output created using representative 365 

concentration pathways (RCPs) 4.5 and 8.5 (Riahi et al., 2007; van Vuuren et al., 2011) and 366 

CMIP6 GCM output created using shared socioeconomic pathways (SSPs) 2-4.5 and 5-8.5 367 

(O’Neill et al., 2016).  The RCP 4.5 and SSP 2-4.5 scenarios assume that the current energy 368 

production and use, and mitigation and adaptation strategies remain the same or similar in the 369 

future. Conversely, the RCP 8.5 and SSP 5-8.5 scenarios depict a worst-case situation, wherein 370 

future energy production heavily relies on fossil fuels, with minimal attention given to mitigation 371 

and adaptation measures. Consequently, the RCP 4.5 and SSP 2-4.5 represent intermediate 372 

emission scenarios, while RCP 8.5 and SSP 5-8.5 represent high emission scenarios. 373 

3 Results 374 

3.1 Ensemble Subset Selection 375 

The ensemble subset selection approach detailed in Section 2c was applied to the CMIP5 376 

and CMIP6 ensembles to select five models from each ensemble for use in the statistical 377 

downscaling. The five GCMs chosen to form the ensemble subsets have a mean absolute error 378 

similar to, or less than, that of the full ensemble for all three variables to be downscaled for the 379 

EAR (Table 1). The spatial pattern and direction of the error of the ensemble subsets is similar to 380 

the full ensemble for total annual P (Figure S2), annual average of daily Tmax (Figure S3), and 381 

annual average of daily Tmin (Figure S4). The ensemble subset selection approach is designed to 382 

select GCMs that minimize historical error while maximizing the spread of projected changes for 383 

all three climate variables for the SGP region. The latter portion of the approach aims to capture 384 

as much of the uncertainty of climate projections associated with the GCMs as possible. The 385 
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results from the ensemble subset selection for the SGP show that the ensemble subset captured 386 

most, if not all, the spread of the full ensemble for all three variables (Figure 2). 387 

 388 

Variable Group 
Mean Absolute Error 

(Full Ensemble) 

Mean Absolute Error 

(Ensemble Subset) 

Tmax (°C) 

CMIP5 -1.2 -0.72 

CMIP6 -0.7 -0.5 

Tmin (°C) 

CMIP5 2.0 1.1 

CMIP6 2.89 1.78 

P (mm) 

CMIP5 26.67 3.56 

CMIP6 12.95 7.11 

Table 1. Mean absolute errors for the full ensemble and all subsets for all three variables of 389 

interest. 390 

 391 

 392 

 393 

  394 

  395 

Figure 2. Spread of projected changes by the end of the century (2070-2099) for the CMIP5 (top 396 

row) and CMIP6 (bottom row) ensembles and subsets for the Southern Great Plains National 397 

Climate assessment (NCA) region. Boxplots represent the full ensemble of models available, 398 

while the red dots are the models selected for downscaling. 399 

 400 

 401 

3.2 Downscaling for the Edwards Aquifer Region 402 

Next, we analyze the representativeness of the historical downscaled climate data (Tmax 403 

and P) for the EAR. In Figure 3, we compare the seasonal cycles of Tmax and P over the 404 

historical period from downscaled CMIP5 and CMIP6 models with the seasonal cycles from the 405 

Daymet historical data. While the downscaled Tmax from CanESM2 and CanESM5 are 406 

comparable to the observations from Daymet, the downscaled P from CanESM2 and CanESM5 407 

do not reasonably represent the seasonality of P in the EAR.  408 

Prior research indicates that ERQM and similar statistical downscaling techniques will 409 

produce output that is time synchronous with the driving GCM (Wootten et al., 2020). This is 410 
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different from a delta method for statistical downscaling where the output is time synchronous 411 

with the observations used for training. In other words, ERQM and similar methods incorporate 412 

dynamic changes in weather sequences from a GCM into the downscaled output. However, this 413 

also implies that incorrect seasonal cycles in a GCM can be translated into downscaled output. 414 

As a result of this effect, CanESM2 and CanESM5 were excluded from subsequent analyses. 415 

To compensate for the exclusion of the two GCMs, we included two additional GCMs 416 

from CMIP6 models (INM-CM-8 and INM-CM-5.0) that exhibit similar magnitudes and 417 

seasonality for P as the other CMIP6 models. Consequently, we used four GCMs from the 418 

CMIP5 ensemble subset and six GCMs from the CMIP6 ensemble subset in the subsequent 419 

analyses and for use by the EAA. The historical and projected annual mean daily Tmax and daily 420 

total P from the CMIP5 and CMIP6 ensemble subsets under the intermediate and high emission 421 

scenarios along with the uncertainty bands for the San Antonio International airport (SAT) are 422 

shown in Figure S5, as an example.  423 

3.2.1 Historical Error 424 

A fundamental purpose of statistical downscaling is to reduce the biases of the GCM 425 

output for a particular region, typically referred to as bias-correction. For both P and Tmax, the 426 

spatial RMSE of the ensemble subsets downscaled by EDQM is much less than the spatial 427 

RMSE of the raw ensemble subset (RMSE is 76-99% smaller for the CMIP5 ensemble and 54-428 

99% smaller for the CMIP6 ensemble). The mean error and root mean square error (RMSE) of P 429 

in each individual model were also reduced by the implementation of EDQM (Table 2). The 430 

error of Tmax and Tmin was also reduced by the EDQM both for the mean subset and for the 431 

individual models in each subset (Tables 3 and 4). There is also improvement in the spatial 432 

distribution of error of the raw GCM ensemble subsets. The raw CMIP5 and CMIP6 ensemble 433 

subsets exhibit a tendency to overestimate P in the western and southern portions of the domain, 434 

underestimate P in the central and northeastern portions, and underestimate Tmax (Figure S6). 435 

The raw ensemble subsets also tended to overestimate Tmin (Figure S7) in the EAR.  436 

 437 

 438 

 439 

Figure 3. Comparison of monthly variations in historical Tmax and P from the downcaled 440 

CMIP5 ensemble subset (a-b) and the downscaled CMIP6 ensemble subset (c-d) to Daymet data 441 

at the San Antonio International Airport (SAT) location. 442 

 443 

 444 

 445 

 446 

 447 
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 450 

  

Mean Error Root Mean Square Error 

Group Model Pre-DS Post-DS Pre-DS Post-DS 

CMIP5 

CMCC-CM -48.78 -2.83 91.34 14.07 

HadGEM2-CC 41.47 0.53 124.58 10.42 

inmcm4 -61.94 -27.78 129.01 29.88 

MRI-ESM1 94.46 -3.91 139.55 6.33 

CMIP6 

EC-Earth3 200.16 -4.04 204.4 7.8 

INM-CM-4-8 -16.51 31.25 110.72 33.73 

INM-CM-5-0 5.96 17.25 100.24 46.39 

KACE1-0-G 27.46 8.82 82.8 13.82 

KIOST-ESM 121.09 27.9 162.37 30.34 

MPI-ESM1-2-HR -194.5 -1.52 215.87 8.36 

Table 2. Mean error and root mean square error for all subset models for the EAR annual precipitation (P, mm) pre-451 

downscaling (Pre-DS) and post-downscaling (Post-DS). 452 

 453 

  

Mean Error Root Mean Square Error 

Group Model Pre-DS Post-DS Pre-DS Post-DS 

CMIP5 

CMCC-CM -0.76 -0.02 0.86 0.02 

HadGEM2-CC -2.74 -0.002 2.93 0.003 

inmcm4 -0.3 -0.01 1.1 0.01 

MRI-ESM1 -3 0.009 3 0.009 

CMIP6 

EC-Earth3 -2.47 0.02 2.5 0.02 

IN-MCM-4-8 0.61 0 1.21 0.01 

IN-MCM-5-0 0.32 -0.01 1.03 0.01 

KACE1-0-G 0.02 -0.02 0.85 0.02 

KIOST-ESM -2.41 0.01 2.58 0.01 

MPI-ESM1-2-HR 0.03 0 0.58 0.01 

Table 3. Mean error and root mean square error for all subset models for the EAR annual average high temperature 454 

(Tmax, °C) pre and post downscaling. 455 

 456 
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 458 

  

Mean Error Root Mean Square Error 

Group Model Pre-DS Post-DS Pre-DS Post-DS 

CMIP5 

CMCC-CM 1.94 -0.03 2.01 0.03 

HadGEM2-CC -0.2 -0.02 1.04 0.02 

inmcm4 -4.01 -0.04 4.15 0.04 

MRI-ESM1 1.27 -0.007 1.46 0.008 

CMIP6 

EC-Earth3 1.07 -0.01 1.18 0.01 

IN-MCM-4-8 1.34 -0.01 1.7 0.02 

IN-MCM-5-0 1.26 -0.02 1.61 0.02 

KACE1-0-G 0.22 -0.06 1.22 0.06 

KIOST-ESM 0.1 -0.03 0.99 0.03 

MPI-ESM1-2-HR 3.74 -0.03 3.82 0.03 

Table 4. Mean error and root mean square error for all subset models for the EAR annual average low temperature 459 

(Tmin, °C) pre-downscaling (Pre-DS) and post-downscaling (Post-DS). 460 

 461 

3.2.2 Projected Changes 462 

The downscaled ensemble subsets provide EAR-specific guidance on potential climatic 463 

changes. The available projections cover the period of 2006-2099 for CMIP5 and 2015-2099 for 464 

CMIP6. In this section we focus on the projected changes during the mid-century (2036-2065) 465 

and end-century (2070-2099). These two periods are commonly used for calculating projected 466 

changes in the National Climate Assessment (NCA). Because the MRI-ESM1 was not run using 467 

the RCP 4.5 as an input, projected changes from the CMIP5 subset with RCP 4.5 consists of 468 

three models, while the CMIP5 subset with RCP 8.5 includes four models. 469 

 470 

3.2.2.1 Projected Temperature Changes 471 

The ensemble-mean projected changes in Tmax are notably larger in the CMIP6 subset 472 

than in the CMIP5 subset (Figure 4). Despite a slight temperature change gradient from west to 473 

east in the EAR, the projected increases are similar across the region. For mid-century under 474 

intermediate emissions (RCP 4.5 and SSP 2-4.5), the mean projected changes in Tmax range 475 

from 1.68°C to 2.18°C. By end-century under the same emissions, the projected changes in 476 

Tmax increase to 2.2°C and 2.64°C. For mid-century under high emissions (RCP 8.5 and SSP 5-477 

8.5), the mean projected changes in Tmax range from 2.08°C to 2.66°C. For end-century under 478 

high-emission scenarios, the mean projected changes in Tmax further increase to 4.25°C - 4.3°C.   479 

Projected increases in temperature extremes follow similar patterns to the projected 480 

increases in Tmax. The average annual number of days with high temperatures over 100°F 481 
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(37.78°C, Tmax100) is projected to increase in the EAR, with the greatest increases in the 482 

southern portion of the region and the smallest increases in the higher elevation regions in the 483 

western and northern portions of the region (Figure S8). For reference, Tmax100 is calculated for 484 

each grid cell and averaged to the EAR mean. The mean projected changes in Tmax100 during 485 

mid-century under intermediate emission scenarios are in the range of 18.76 days to 43.15 days. 486 

The mean projected changes in Tmax100 by end-century under the same emission scenarios 487 

range from 26.63 days to 42.45 days. The mean projected increase in Tmax100 during mid-488 

century under high emission scenarios ranges from 30.27 days to 51.07 days and 68.21 days to 489 

71.69 days by end-century. These results indicate a higher risk of experiencing more frequent 490 

and prolonged dry spells, potentially triggering the onset of droughts within the EAR under 491 

future climates, especially under high emission scenarios. The individual GCMs all suggest an 492 

increase in both Tmax and Tmax100 across the region but with varying magnitudes (Table 5, 493 

Figures S9-S12). The results for Tmin are similar to Tmax in both magnitude and spatial patterns 494 

across the EAR (Figures S13-S15).  495 

 496 

Figure 4. Mean projected changes in annual average high temperature (Tmax) for the mid-century (2036-2065) and 497 

end-century (2070-2099) from the downscaled CMIP5 (left) and CMIP6 (right) ensembles. CMIP5 ensemble 498 

includes the RCP 4.5 and RCP 8.5 scenarios. CMIP6 ensemble includes the SSP 2-4.5 and SSP 5-8.5 scenarios. 499 

 500 
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Intermediate Emission Scenario (RCP 4.5 and SSP 2-4.5) High Emission Scenario (RCP 8.5 and SSP 5-8.5) 

  
Tmax Tmax100 Tmax Tmax100 

Group Model Mid-Century End-Century Mid-Century End-Century Mid-Century End-Century Mid-Century End-Century 

CMIP5 

CMCC-CM 1.85 2.8 24.84 38.68 2.33 5.58 37.9 104.76 

HadGEM2-CC 2.67 3.23 28.85 37.32 3.23 5.3 41.67 86.11 

inmcm4 0.51 0.57 2.58 3.9 1.11 2.8 13.62 29.9 

MRI-ESM1 NA NA NA NA 1.66 3.3 27.89 52.07 

CMIP6 

EC-Earth3 2.77 3.72 57.23 64.79 3.64 5.9 78.92 106.3 

INM-CM4-8 1.85 1.9 31.9 28.86 2.41 3.95 38.15 55.83 

INM-CM5-0 1.7 1.92 25.9 35.13 2.16 3.24 32.47 45.46 

KACE1-0-G 2.72 3.3 43.11 35.06 3.15 4.9 51.87 76.53 

KIOST-ESM 2.55 2.78 73.34 63.84 2.74 4.03 74.2 87.61 

MPI-ESM1-2-HR 1.49 2.19 27.44 27.02 1.88 3.79 30.8 58.38 

Table 5. Projected changes in annual average high temperature (Tmax, °C) and annual average number of days Tmax ≥ 100°F (Tmax100, days) for all models 501 

across the EAR. 502 

 503 

 504 

 505 
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3.2.2.2 Projected Precipitation Changes 506 

The mean projected changes in P within the EAR are more variable under different 507 

emission scenarios. In general, the CMIP5 subset projects higher P, while the CMIP6 subset 508 

projects less P. Under the intermediate emission scenarios, the CMIP5 subset projects the most 509 

substantial increase in P in end-century, while the CMIP6 subset projects the most significant 510 

decrease in P in mid-century. In particular, the CMIP6 subset projects less P, especially on the 511 

eastern side of the region, under both intermediate and high emission scenarios (Figure 5). The 512 

mean projected increases in P during mid-century under low emissions exhibit a broader 513 

variation, ranging from an increase of 27.23 mm (CMIP5) to a decrease of 40.85 mm (CMIP6). 514 

Under the same emission scenario, the mean P is projected to increase in the range of 1.28 mm 515 

(CMIP6) to 49.87 mm (CMIP5) during end-century. Under the high emission scenarios during 516 

mid-century, the mean projected range from a decrease of 14.55 mm (CMIP6) to an increase of 517 

16.78 mm (CMIP5). However, under high emission scenarios during end-century, the mean P is 518 

projected to decrease in the range of 0.99 mm (CMIP6) and 19.88 mm (CMIP5).  519 

The ensemble subsets indicate a negligible to small increase in 1-day maximum 520 

precipitation (rx1day) with no clear spatial pattern (Figure S16). Under intermediate emissions in 521 

mid-century, the mean projected changes in rx1day are in the range of 8.26 mm (CMIP6) and 522 

12.01 mm (CMIP5). In the end of the century under the same emissions scenario, the mean 523 

changes in rx1day range from 8.88 mm (CMIP6) to 9.81 mm (CMIP5). Under high emissions 524 

during mid-century, the mean changes in rx1day are projected to be in the range of 6.06 mm 525 

(CMIP5) and 12.06 mm (CMIP6). Under the same emission scenarios, the mean projected 526 

changes in rx1day by the end of the century range from 10.30 mm (CMIP6) to 17.42 mm 527 

(CMIP5). Thus, unlike P, the mean projected changes in rx1day show little variation regardless 528 

of the emissions scenarios. The projected changes in P have a wide range reflecting the potential 529 

for both a drier or wetter future across the EAR, while the rx1day is projected to increase (Table 530 

6, Figures S17-S20). The anomalies in regional average projected climatic features acquired 531 

from the CMIP5 and CMIP6 subsets under intermediate and high emission scenarios are 532 

summarized in Table 7. 533 

 534 

 535 

Figure 5. Mean projected changes in average annual total precipitation (P) for the mid-century (2036-2065) and 536 

end-century (2070-2099) from the downscaled CMIP5 (left) and CMIP6 (right) ensembles. CMIP5 ensemble 537 

includes the RCP 4.5 and RCP 8.5 scenarios. CMIP6 ensemble includes the SSP 2-4.5 and SSP 5-8.5 scenarios. 538 

 539 
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Intermediate Emission Scenario (RCP 4.5 and SSP 2-4.5) High Emission Scenario (RCP 8.5 and SSP 5-8.5) 

  
P rx1day P rx1day 

Group Model Mid-Century End-Century Mid-Century End-Century Mid-Century End-Century Mid-Century End-Century 

CMIP5 

CMCC-CM 39.73 44.73 18.14 12.36 -28.36 -167.52 12.01 13.97 

HadGEM2-CC 27.25 19.54 12.72 11.49 29.87 12.4 6.5 18.14 

inmcm4 14.71 85.34 5.16 5.57 27.1 1.45 4.9 17.74 

MRI-ESM1 NA NA NA NA 38.52 74.15 0.81 19.82 

CMIP6 

EC-Earth3 -12.88 -53.78 15.13 9.48 -32.97 -54.06 12.28 19.06 

INM-CM4-8 -93.45 94.85 0.084 8.81 -57.89 10.61 1.17 2.6 

INM-CM5-0 -62.22 21.86 0.98 4.09 27.09 209.62 8.29 25.99 

KACE1-0-G 34.95 84.02 13.86 16.48 96.42 38.21 28.78 7.85 

KIOST-ESM -69.94 -53.35 10.75 12.55 -68.53 -79.74 5.1 -2.53 

MPI-ESM1-2-HR -41.53 -85.93 8.73 1.84 -51.4 -130.57 16.73 8.8 

Table 6. Projected changes in annual precipitation (P) and 1-day maximum precipitation (rx1day) (mm) for all models across the EAR. 540 

 541 

 542 



manuscript submitted to Earth’s Future 

 

 543 

  
CMIP5 CMIP6 

Time Period Variable RCP 4.5 RCP 8.5 SSP 2-4.5 SSP 5-8.5 

Mid-Century 

Tmax 1.68 2.08 2.18 2.66 

P 27.23 16.78 -40.85 -14.55 

# of rain days -1.70 -2.12 -3.80 -3.19 

rx1day 12.01 6.06 8.26 12.06 

Tmax100 18.76 30.27 43.15 51.07 

End-Century 

Tmax 2.20 4.25 2.64 4.30 

P 49.87 -19.88 1.28 -0.99 

# of rain days -1.01 -7.73 -2.45 -4.33 

rx1day 9.81 17.42 8.88 10.30 

Tmax100 26.63 68.21 42.45 71.69 

Table 7. Regional average of projected changes in climate variables from CMIP5 and CMIP6 subset ensembles 544 

during mid-century and end-century under intermediate emission (RCP 4.5 and SSP 2-4.5) and high emission (RCP 545 

8.5 and SSP 5-8.5 scenarios). 546 

 547 

4 Discussion 548 

The approach to creating customized downscaled projections for the EAR includes 549 

selecting a subset of GCMs, downscaling those chosen GCMs, determining historical error, and 550 

determining projected changes. In this case, the ensemble subset selection approach initially 551 

identified five GCMs from CMIP5 and five GCMs from CMIP6, collectively yielding 552 

comparable results to their respective full ensembles. These subsets were changed in consultation 553 

with EAA to remove those with unreasonable seasonal cycles of P. The statistical downscaling 554 

reduced the error for the selected GCMs for all three variables. According to the ensembles of 555 

downscaled projections (Table 7), the average daily Tmax is projected to increase by 1.93°C to 556 

2.37°C on average by mid-century and 2.42°C to 4.27°C on average by end-century. These 557 

changes were similar for Tmin. The projected changes in P exhibited greater variations between 558 

the CMIP5 and CMIP6 ensembles. According to the CMIP5 downscaled ensembles, average 559 

total P in the EAR is projected to increase by 16.78 to 27.23 mm on average by mid-century. The 560 

CMIP5 ensembles also project P to increase by 49.87 mm on average (intermediate scenarios) 561 

and decrease by 19.88 mm on average (high scenarios) by end-century. According to the CMIP6 562 

downscaled ensembles, P is projected to decrease by 14.55 to 40.85 mm on average by mid-563 

century. The CMIP6 ensembles project little change in P (decrease by 0.99 mm to increase of 564 

1.28 mm) by end-century. Thus, during the projected warmer temperatures in the EAR, while 565 

CMIP5 ensemble projects increased precipitation, CMIP6 ensemble project reduced precipitation 566 

by mid-century under both intermediate and high emission scenarios. However, under 567 

persistently warming temperatures by end-century, while CMIP5 and CMIP6 ensembles project 568 

increased precipitation under the intermediate emission scenario, they project reduced 569 
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precipitation under the high emission scenario. Increasing temperatures will likely lead to a net 570 

increase in evapotranspiration though this was not formally evaluated in this study. 571 

Our findings align with earlier studies that used previous generations of GCMs and noted 572 

projected increases in Tmax and decreases in P (e.g. Loáiciga et al. 2000; Loáiciga 2009), and 573 

projections from two National Climate Assessments (Kloesel et al., 2018; Marvel et al., 2023). A 574 

key finding is that the temperatures will likely increase in the EAR with a corresponding increase 575 

in the frequency of very hot days, which will increase evapotranspiration. These factors are 576 

poised to intensify the frequency and severity of drought conditions in the EAR under the 577 

changing climate. More frequent drought conditions could lead to decreased groundwater 578 

availability, reduced spring flow, and elevated surface water temperatures. Such shifts pose 579 

challenges for aquifer management, especially with population growth and required sustainable 580 

environmental flow for karstic spring ecosystems. Our findings are consistent with those of 581 

Loáiciga et al. (2000; 2009), which suggest that the Edwards Aquifer’s groundwater resources 582 

could be at risk in a changing climate, particularly without rigorous mitigation efforts. This study 583 

builds upon and refines the approach taken by Loáiciga et al. (2000; 2009) in integrating climate 584 

projections for the EAR. Their research employed a change factor (or delta method), applying 585 

uniform change factors to historical temperature and precipitation data, remains time-586 

synchronous with the historical observations. However, it does not capture the dynamic 587 

variability in weather patterns provided by GCMs, thereby artificially limiting variability in rain 588 

events and maintaining the original distribution shape. In contrast, the EDQM downscaling in 589 

our approach to addressing the needs of the EAA allows for a nuanced representation of changes, 590 

including alterations in the tails of the distribution indicated by the GCM (Wootten et al., 2020), 591 

which is crucial for accurate hydrological modeling of the Edwards Aquifer. The downscaled 592 

climate projections also indicate an increase in 1-day maximum P but fewer rainy days on 593 

average. These changes may weaken diffuse recharge while enhancing the role and impact of 594 

focused recharge. Moreover, as precipitation events become more intense and less frequent, the 595 

likelihood of flooding increases due to larger amounts of runoff and reduced soil absorption. In 596 

addition, the projections produced in this study provided added confidence to existing 597 

projections for the region and the necessary resolution for future assessments of projected 598 

changes in groundwater levels and springs flow in the EAR. The climate projections generated in 599 

this work will be integral to future groundwater and spring flow modeling efforts in the Edwards 600 

Aquifer and will be presented as part of our follow-up research.  601 

A noteworthy aspect of this study is the comparison between the CMIP6 and CMIP5 602 

model ensembles with a larger projected temperature increase in the CMIP6 ensemble. This 603 

difference suggests a discussion of the ‘hot model’ issue is warranted. Some CMIP6 models, 604 

termed ‘hot models’, exhibit an ECS that exceeds the range deemed ‘very likely’ (between 2°C 605 

and 5°C) by the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (AR6, 606 

Hausfather et al. 2022). Hausfather et al. (2022) recommend excluding models that fall outside 607 

this ‘very likely’ ECS range, as they may overestimate the sensitivity to emissions scenario-608 

induced forcing changes. This aspect highlights the importance of model selection and 609 

interpretation in climate studies with regards to the “practitioner’s dilemma” . 610 

The ensemble subset selection approach focused on how effectively each potential subset 611 

captured the historical climatology of three variables across the Southern Great Plains (SGP) and 612 

the range of projections in the full ensemble. Except for CanESM5, selected GCMs fall within 613 

the ‘very likely’ ECS range suggested by AR6 report (Table S2). ECS is a global metric that 614 
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quantifies the global average temperature increase expected after the climate system stabilizes 615 

following a doubling of atmospheric carbon dioxide levels. The ability of a GCM to accurately 616 

represent this global sensitivity metric does not necessarily correlate with ability to capture 617 

regional physical processes or impacts of large-scale climatic changes, particularly for 618 

precipitation projections. For example, the EC-Earth3 and KACE1-0-G have a similar ECS 619 

value, but the downscaled EC-Earth projects a precipitation decrease in the EAR while the 620 

downscaled KACE1-0-G projects an increase in the EAR (Table S2). This finding highlights a 621 

critical aspect: the ECS values of the subset models may not necessarily have a strong 622 

relationship with regional precipitation projections post-downscaling. This underscores the 623 

importance of considering regional-specific dynamics and responses when selecting or creating 624 

decision-relevant climate projections. Aligned with this critical observation, CanESM2 and 625 

CanESM5 were omitted from further analyses at the EAR-scale in this study, but their exclusion 626 

was not due to their ECS values, but because of their poor representation of the seasonality of 627 

historical regional precipitation within the EAR (see Figure S5), and this was deemed to 628 

unacceptable with respect to the needs of the EAA for climate projections.  629 

Hydrological models are known for their complex and non-linear responses to 630 

temperature and precipitation changes (Chen et al. 2016; Ross and Najjar 2019). Recent studies, 631 

including Rahimpour Asenjan et al. (2023), have explored the effects of excluding ‘hot models’ 632 

from streamflow projections with mixed results. Omitting ‘hot models’ sometimes reduced the 633 

uncertainty in streamflow projections, in other instances, it either had no impact or even 634 

increased the uncertainty. This variability in outcomes underscores a second point for the 635 

challenge of the “practitioner’s dilemma”:  GCMs outside the ‘very likely’ ECS range may still, 636 

following downscaling and hydrology modeling, produce plausible projections of climate 637 

impacts for a specific application or decision-context. This is likely because a GCM that is an 638 

outlier in terms of ECS may well not be an outlier for regional scale changes as is shown in our 639 

results (Table S2). Future research should delve into understanding the potential impacts of ‘hot 640 

models’ on various climate-related aspects, such as aquifer recharge, particularly as the sample 641 

size in this study was small compared to other studies such as Rahimpour Asenjan et al. (2023). 642 

The current selection of projections discussed in this study represents a diverse range of 643 

projections that will be integral to our ongoing efforts in groundwater and streamflow modeling 644 

within the Edwards Aquifer. This approach ensures a comprehensive and nuanced understanding 645 

of climate impacts on the EAR, considering a wide range of model sensitivities and scenarios. 646 

Downscaled climate projections are subject to various sources of uncertainty, including 647 

uncertainties related to the GCMs, emissions scenarios, and the downscaling process itself 648 

(Hawkins & Sutton, 2009, 2011; Wootten et al., 2017). Additionally, the training data used in 649 

statistical downscaling introduces another layer of uncertainty (Pourmokhtarian & Driscoll, 650 

2016; Wootten et al., 2020). It is generally observed that the uncertainty in downscaling is less 651 

significant than that in GCMs and scenarios, particularly concerning temperature projections. In 652 

addition, other studies have noted that the uncertainties of the hydrology models or other impacts 653 

models are themselves significant sources of uncertainty in climate impacts assessments (e.g. 654 

Chen et al. 2011; Giuntoli et al. 2018; Krysanova et al. 2018; Trudel et al. 2017; Piotrowski et al. 655 

2021). While our downscaled projections do not incorporate a variety of downscaling techniques 656 

or multiple sets of gridded observations for training, the ensemble subset selection approach we 657 

employed effectively captures the GCM uncertainty within our CMIP5 and CMIP6 subset 658 

ensemble. Moreover, by utilizing multiple emissions scenarios, our projections also address 659 

scenario uncertainty. Thus, the projections generated in this study adequately encompass the key 660 
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sources of uncertainty pertinent to future analyses. However, future research could benefit from 661 

considering multiple downscaling techniques or incorporating additional training data, 662 

particularly for the EAR or additional comparisons to pre-existing downscaled projections. This 663 

consideration is especially relevant for precipitation projections, where the uncertainty associated 664 

with the downscaling technique and training data tends to be more pronounced (e.g. Wootten et 665 

al. 2020). Such an expansion in methodologies and data sources would enhance the robustness 666 

and reliability of future climate impact assessments.  667 

Overall, this study presents a complete approach to selecting and/or creating new 668 

projections in the decision-relevant context of the EAA. This approach allows for selecting a 669 

subset of GCMs to either downscale or work with from a pre-downscaled dataset. In addition, 670 

this approach is flexible enough to allow for analytic selection and evaluation and for 671 

incorporating other insights or needs identified by an end-user for a given application. The 672 

approach described in this study is offered as an approach to addressing the “practitioner’s 673 

dilemma” that could be easily applied to other contexts and regions and offers the opportunity to 674 

address when new projections are needed alongside of selections from pre-existing projections. 675 

However, this approach is one of many, and it is beyond the scope of this project to compare 676 

approaches to determine best practices and standardized evaluation and selection protocols to 677 

address the larger challenge of the “practitioner’s dilemma.” This comparison remains a gap in 678 

the literature that is a critical need for the future use and development of decision-relevant 679 

climate projections. In addition, this method and other subset selection methods may also be 680 

sensitive to the resolution of the data used. This aspect in particular is the subject of future 681 

research by the authors. 682 

Management of the Edwards Aquifer relies on several mitigation and conservation 683 

strategies designed to maintain adequate spring flow to ensure the viability of threatened and 684 

endangered species at two major spring systems. Specific spring flow rates (e.g., long-term 685 

average flows and minimum short-term flows) were established as part of the Edwards Aquifer 686 

Habitat Conservation Plan (RECON Environmental Inc. et al., 2012) and its associated 687 

Incidental Take Permit (ITP) (U.S. Fish and Wildlife Service, 2015). For example, the target 10-688 

day average minimum spring flows at Comal and San Marcos springs are 0.85 m
3
/s (30 ft

3
/s) and 689 

1.27 m
3
/s (45 ft

3
/s), respectively. The magnitude and sequence for implementing spring flow 690 

protection measures are based on sustaining minimum spring flows through conditions 691 

equivalent to the regional drought of record, which occurred in the 1950s. The current ITP 692 

expires in 2028, and its renewal will require explicit consideration of the potential effects of 693 

future climate on the groundwater system and spring flows. Thus, a particular concern is whether 694 

current mitigation measures will be adequate to ensure adequate spring flows under future 695 

droughts. 696 

While the climate projections described here provide insight into future changes in the 697 

magnitude and frequency of stressors on the aquifer (e.g., increased temperatures and fewer days 698 

with precipitation), the projections must be used to produce estimates of aquifer recharge which 699 

are then input to a groundwater flow model that can account for pumping demand and 700 

implementation of mitigation strategies. Accurate estimation of recharge, particularly in the 701 

spatially complex karstic aquifer system, is enhanced through  our downscaling process with 702 

finer discretization. The groundwater flow model will simulate water levels and spring flows 703 

over the proposed ITP renewal period for all 19 sets of projections. These results will be crucial 704 
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for evaluating the adequacy of the current regulatory framework or identifying needs for changes 705 

in aquifer management. Recharge and groundwater flow modeling is currently in progress and 706 

results will be reported upon completion of these studies. 707 

5 Conclusions 708 

This study details an approach to addressing the “practitioner’s dilemma” in the decision-709 

context of the Edwards Aquifer Authority, resulting in the production of downscaled climate 710 

projections of daily high temperature, daily low temperature, and daily total precipitation for the 711 

Edwards Aquifer Region. The unique needs of the Edwards Aquifer Region required producing 712 

new downscaled projections rather than relying on pre-exisiting datasets. This is different from 713 

traditional studies in regards to the “pracitioner’s dilemma.” The process encompasses the 714 

selection of appropriate GCMs for downscaling and the downscaling process itself that can be 715 

flexibly applied to other regions and account for other insights. We utilized subset ensembles 716 

from the CMIP5 and CMIP6 GCMs with statistical downscaling correcting the errors in the 717 

chosen GCMs. Our newly developed dataset projects significant climatic changes for the 718 

Edwards Aquifer Region. By the end of the century, the ensemble means of regional average 719 

temperatures are projected to rise by 2.0°C to 4.3°C while annual precipitation is projected to 720 

vary from a decrease of 10.4 mm to an increase of 25.6 mm. A decrease in rainy days by up to 6 721 

and an increase in the number of days with temperatures exceeding 37.8°C (100°F) of 35 to 70 722 

days annually on average are also projected. Projected climatic stress in the region could have 723 

been worse if the downscaled climatic data from ‘hot models’ were included in the regional 724 

climate analyses. They were omitted as they did not accurately represent the magnitude and 725 

seasonality of historical precipitation in the region. The projected climatic shifts are likely to 726 

increase heatwaves, dry spells, and evapotranspiration rates, thereby exacerbating the potential 727 

for development of drought conditions. This could lead to a reduction in the availability of 728 

groundwater within the Edwards Aquifer. The set of downscaled projections generated in this 729 

study will be pivotal in future groundwater and spring flow modeling. They will provide a robust 730 

and comprehensive understanding of the potential impacts of climate change on the Edwards 731 

Aquifer, aiding in the development of effective strategies to manage and mitigate these impacts. 732 

Moreover, this study presents an approach to addressing the “practitioner’s dilemma,” advancing 733 

the discussion on the production of decision-relevant climate projections.  734 
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The EAA is committed to providing the downscaled projections to interested users. However, the 754 

EAA has chosen not to provide a direct link or access to their data repository owing to security 755 

concerns. The EAA has granted permission to the South Central CASC to provide the EAR 756 

downscaled climate projections via the USGS GeoData Portal. The EAR downscaled projections 757 
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manuscript will be updated when archiving is complete and a DOI / citation is provided by 759 
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