
 

 
Comal Springs Riffle Beetle Population Assessment Work Plan 
Contract 21-019-TES  (May 2022) 
 
Biological considerations 
 
Comal Springs riffle beetle, (CSRB) Heterelmis comalensis, is found at surficial interfaces where springs 
are active at the Comal Springs. Our current life-history knowledge indicates that larvae take 9 – 11 
months to reach maturity in captivity (BIO-WEST 2017). Wild caught adults may live over a year in 
captivity, but often do not live as long (Fries 2003) and captive reared adults rarely live to one year old 
(personal observations). Females produce eggs soon after becoming adults and are iteroparous (Kosnicki 
2022). Therefore, new breeding cohorts can be expected within less than one year and interbreeding 
among cohorts is possible. These life-history aspects complicate mark and recapture methods, 
assumptions of N-mixture models, and other census methods. However, we can assume that each 
population census is a representation of the population size and distribution at the time of that census 
and if surveys are conducted far enough apart, sampling the same individuals is highly unlikely. 
 
Field sampling design 
 
Sample sites 
 
Sampling will be conducted over three of the sub-populations as recognized by Lucas et al. (2016) plus 
the headwaters area of Comal Springs. The Spring Run 2 area will not be sampled since there are few 
springs along this reach and since it will be under recovery from restoration activities. Sampling will 
include the 30 designated sites that are used for the Edwards Aquifer Habitat Conservation Plan (EAHCP) 
bi-annual biological monitoring. In addition, 50 randomly selected springs from each sub-population 
area have been selected to represent roughly 20% of the mapped springs designated by TPWD (Map 1). 
The areas and number of sites has been selected as follows: 
 
Spring Run 1: 10 sites 
Spring Run 3: 20 (including 10 biomonitoring sites) 
Western shoreline + Spring Island + Backwater: 42 (including 20 biomonitoring sites) 
Spring Run 4 + Spring Run 5 + Comal headwaters + Blieder’s Creek: 8 sites 
 
Upwelling and margin habitats 
 
Springs types will be divided into upwellings and margin spring habitats. After discussions with Marcus 
Gary (Edwards Aquifer Authority), it was clear that flow measures from these should be considered 
separately (see Flow index measures below). Upwellings are represented by spring flow that is vertical in 
direction, originating from “alluvial clusters” or karst orifices. A specific unit of area around this spring-
type will be used to record flow as a means of standardizing flow measures. Margin spring habitats will 
be associated with more horizontal flows where the area of spring activity will be measured. 
 
Flow index measures 
 
A flow index will be based on velocities measured over the area around the lure. For upwelling habitats, 
a “bucket flow-measuring device” will be used to isolate flow from spring upwellings, incorporating a 
660 cm2 area. The bucket flow-measuring device (BFMD) will consist of an inverted 5-gal bucket with the 
bottom cut off. A ¾-in PVC-pipe will be positioned horizontally through the top of the bucket so that it 
can support a flow-meter probe in the center of the bucket and ca. 2.4 cm from the surface of the spring 
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source to be measured. Four measures will be taken around the spring, one measure directly above the 
position of the lure (before lure is placed and after it is removed), and three equal-distant spaced 
measures around the central measure at a radius of 10 cm. 
 
Margin spring-type habitats will be delineated around a linear plane interpreted as perpendicular to the 
main concentration of spring-flow associated with the placement of the lure. A standardized device such 
as a bucket cannot be used in these types of habitats because they are based at or near the water 
surface and/or due to their 3-D structure. For these habitats, sample areas that are < 10 cm X 10 cm a 
single min and max flow will be measured, separately, by physically holding the probe in the spring flow 
until stable readings can be taken. Larger margin habitats will be subdivided into triangles so that 
Heron’s formula can be used to find the area. Flow measures will be taken within each triangle. 
 
A field survey will be conducted to examine the variation of this measuring strategy where at least six 
springs (three of each spring-type) will be measured with this protocol ca. five times each, over a single 
day as a means of assessing our precision. 
 
Sampling level covariates 
 
Julian day lure is retrieved (reflects the calendar day) 
Cumulative river Q measured from USGS gauge station (average over lure placement period) 
Cumulative precipitations measures (taken from closest gauge stations) 
Sub-population (as delineated above) 
 
Covariates for each lure (see datasheet) 
 
Recorded during lure set and retrieval 
Temperature oC 
DO (mg/L) 
Conductivity (µS/cm) 
pH 
Water depth (cm) 
Lure depth within spring (cm) – The depth of the lure within the substrate 
Percent substrate coverage 
 
Recorded during lure retrieval only 
Biofilm color and percentage coverage categorization (compare with unconditioned cotton sample) 
Lure condition 
Organic material present – Note the types of organic materials at the spring surface 
Number of days deployed 
 
Beetle counts and removal considerations 
 
Upon retrieval, lures will be inspected with a stereoscope in the field. All individuals will be identified 
and counted according to maturity level. Larvae will be qualitatively identified as small, medium or large. 
All individuals will be returned back to the spring from which they were collected. The US Fish and 
Wildlife Service has requested four specimens per lure for an upcoming genomics assessment. It is 
unknown how many beetles will be attracted per lure. In the event that a large number of individuals 
(larvae and/or adult) are collected from a lure, four individuals can likely be removed without an 
anticipated influence on future sampling events. In these cases, a nuisance parameter will be created to 
account for percentage of individuals removed from the previous sampling event. For lures that only 
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attract two or three individuals, removing 100% of the individuals is not considered appropriate at this 
time. 
 
Sample schedule 
 
The sampling schedule includes four sampling events, following the spring and fall EAHCP biomonitoring 
schedule which minimizes the frequency of habitat disturbance. . The field sampling for this schedule 
would be initiated in fall 2022 and would be concluded in spring 2024. Each sampling event will reflect 
similar protocols for the current EAHCP biological monitoring program. Lures will be set for ca. one 
month to allow for biofilms to develop and attract beetles before retrieval. 

 
Statistical analysis 
 
N-mixture models 
 
The request for proposal for this study implicated that the survey data should consider analysis with N-
mixture models. We have extensively explored the utility of using the N-mixture model developed by 
Royle (2004), speaking with the author of the model and other statisticians. However, as described in 
the sampling design, life-history aspects of CSRB complicate the assumptions, mainly that the population 
is not closed between sampling events. We have also considered the use of an open N-mixture model by 
Dail and Madsen (2011), which is a generalized form of the Royle (2004) model that assumes population 
status between repeated sampling events is open according to a Markov process, where abundance at 
site i at sampling event t only depends on sampling event t-1. However, true sample replication is 
probably not achievable to satisfy the underlying assumptions. Open N-mixture models are also likely an 
unsuitable approach for insect populations that are subject to high levels of over-dispersion (J.A. Royle, 
personal communication). This modeling approach was previously used by Diaz et al. (2020) to address 
similar questions for Heterelmis cf. glabra within spring systems of the Devils River basin. Even though 
their candidate model appeared to perform well (AICc w = 0.84), their population estimates did not 
seem realistic for an insect. In as much, we will experiment with the N-mixture models; however, we are 
also offering an alternative analysis which is detailed below. 
 
General linear mixed model overview 
 
The proposed experimental design anticipates that the data to be collected will be highly structured, 
containing non-independent observations at multiple hierarchal levels (Fig. 1). Based on the presence of 
more complex data structure, a generalized linear mixed effects model (GLMM) framework will be used 
to quantify spatiotemporal patterns in population performance of CSRB. GLMMs are an extension of 
generalized linear models that includes a combination of fixed and random effects. Fixed effects are 
predictor variables that are hypothesized to be ecologically meaningful in relation to the response 
variable. In contrast, random effects represent a grouping variable, such as levels within a hierarchy that 
are repeatedly sampled from a larger level. GLMMs are flexible methods for modeling non-normal data 
and the incorporation of random effects helps control for non-independence within the data. Moreover, 
explicitly accounting for within/among group structure and variation provides more reliable inferences 
about the fixed effects that better generalizes to the entire population (i.e., partial pooling) (Bolker et al. 
2009; Kéry & Royle 2015; Harrison et al. 2018). Provided below outlines the general protocol of 
statistical procedures that will be used to fit, validate, and evaluate GLMMs to quantify population 
trends of CSRB and assess the efficacy of this approach (Zuur & leno 2016; Harrison et al. 2018).  
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Fig. 1. Example of the hierarchal structure for the CSRB data to be collected. Levels one and two 
characterizes the metapopulation structure of CSRB as described in Lucas et al. (2016), which include 
four sub-populations. Levels three and four represents the nested survey process (example provided via 
one sub-population), where fixed sites are repeatedly sampled. 
 
General Linear Mixed Model Statistical Procedures 
 
Step 1: Select appropriate population metrics and conduct exploratory data analysis 
 
Interpretations of count data from GLMMs differ from N-mixture models, mainly because they don’t 
explicitly model the underlying detection process that generated the observed counts (Royle 2004; 
O’Brien 2011). This integration of detection probability distinguishes estimates of population size 
provided by N-mixture models compared to hierarchical models like GLMMs, which instead estimate a 
population index (i.e., metric assumed to be correlated with the true population size) (O’Brien 2011). 
Therefore, ‘relative abundance’ will be used as a population index via lure counts, under the assumption 
that lure counts are expected to vary with population size, meaning that the direction of change in 
relative abundance will be used to infer trends in the population.  Moreover, due to the cryptic nature 
of CSRB and potential observation variance (e.g., measurement error, random variability) associated 
with lure sampling, count data collected at a given time may be zero-inflated or highly skewed, which 
could make it difficult to provide reliable estimates of relative abundance via statistical inference 
(MacKenzie et al. 2006). Therefore, presence/absence will be used as an additional metric to quantify 
population trends. 
 
Patterns in the dataset will be explored to describe/understand response and predictor variables within 
the data with summary statistics and data visualization. Data exploration may also help identify 
potentially meaningful trends and group structures. Predictor-variable relationships with the response 
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variable will be explored using summary statistics (e.g., central tendency, variation, zero counts, 
skewness, kurtosis) and visual tools as appropriate for continuous (e.g., scatterplots with loess trend 
lines, histograms) and categorical (e.g., boxplots) predictors. Variation within predictors and covariation 
among predictors will also be explored (Bolker 2008; Wickham & Grolemund 2016).  
 
Step 2: Present the statistical models 
 
Estimates of CSRB presence/absence will be fit with a binomial error distribution (link function = logit):               
Y ~ Binomial(η, Φ), where η and Φ denote the number of trials and probability of presence, 
respectively. Relative abundance will be estimated using count data and may be fit with a Poisson error 
distribution (link function = log): Y ~ Poisson(λ), where λ represents mean counts and assumes λ equals 
the variance σ2. If the assumption for the Poisson distribution does not adequately represent the count 
data (i.e., overdispersion; σ2 > λ), a negative binomial distribution (link function = log) will be used:                            
Y ~ NegBinom(λ, κ), where the second parameter κ controls the dispersion of the distribution by 
allowing σ2 to exceed λ (Bolker 2008; Zuur et al. 2009). Models will be encoded to account for underlying 
structure within the data via nested and crossed random effects. Specifically, repeated measures are 
nested in sites and sites are nested in each sub-population, which are crossed with spring-type. Random 
intercept models (Eq. 1) will be fit and compared with random intercept and slope models (Eq. 2) for 
each population metric. Using notation similar to the R package ‘lme4’, both GLMMs can be described 
as:  
 
Eq. 1 Yhijk ~ Xhijk+ (1 | sub-populationi) + (1 | sub-populationi:sitej) + (1 | spring-typeh) 

 
Eq. 2 Yihijk ~ Xhijk+ (1 + Xhijk | sub-populationi) + (1 + Xhijk | sub-populationi:sitej) +  

(1 + Xhijk | spring-typeh) 
 
where Yhijk is the kth repeated measure in site j within sub-population i and spring-type h, and Xijk is the 
chosen fixed effects that may include, but are not limited to, the covariates listed previously. 
Interactions between fixed effects that are identified as important may also be included. For the random 
effects component, sub-populationi (Eq 3.) is a random intercept that allows for variation between the 
four sub-populations, sub-populationi:sitej (Eq. 4) is a second random intercept, allowing for variation 
between sites j of the same sub-population i, and spring-typeh (Eq. 5) is a third random intercept that 
allows variation between upwelling and margin spring habitats.  Random intercepts are assumed to be 
normally distributed and defined as:  
 
Eq. 3  sub-populationi ~ Normal(0, σ2sub-populationi) 
 
Eq. 4  sub-populationi:sitej ~ Normal(0, σ2sub-populationi:sitej) 
 
Eq. 5  spring-typeh ~ Normal(0, σ2spring-typeh) 
 
with a mean of zero and variance σ2, which determines the level of variation between these groupings. 
The random slopes component shown by Eq. 2 also allows for the effect size of fixed effects X (i.e., 
regression coefficients) to vary among groups (Zurr et al. 2009).  
 
If the count data contains more zeros than expected from a Poisson or negative binomial distribution, a 
zero-inflated GLMM may be used instead. Zero-inflated models are fit using a mixture distribution with 
two parts that are modeled from the same data, which includes the probability of presence and mean 
counts when present (Zurr et al. 2009; Harrison 2014; Brooks et al. 2017). Since zero-inflated models 
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estimate probability of presence and mean counts in tandem, separate analyses of presence/absence 
and relative abundance would not be required.   
 
Step 3: Pre-process data for model fitting 
 
Insights from data exploration will be used to facilitate data pre-processing prior to fitting each model 
(Kuhn & Johnson 2013). Predictors that exhibit near-zero variance or are highly correlated (r > 0.7) will 
be removed from the dataset. Data transformation may be required if models do not converge or if 
assumptions are violated, which may include centering/scaling or other techniques (e.g., square root, 
log).  
 
Step 4: Fit and validate the model 
 
Each model will be fit using the R package ‘lme4’, or ‘glmmTMB’ if using a zero-inflated model is 
warranted. Model fit will be validated by assessing the diagnostics of the model to check whether basic 
distributional and structural assumptions of the model have been violated. Model diagnostics that may 
be checked include: 
 

1. Overdispersion  
2. Inspection of residuals 

a. Pearson residuals vs. fitted values 
b. Pearson residuals vs. predictor variables (fixed effects) 
c. Pearson residuals vs. fitted values per grouping level of the random intercept 
d. Spatiotemporal independence of Pearson residuals 

3. Stability of variance components and significance of random effects 
4. Goodness-of-fit (e.g., R2)     

 
Model fit will be assessed by checking diagnostics from the global model directly. Simulation procedures 
(e.g., Monte Carlo, parametric bootstrapping) will also be used to check model diagnostics, as well as 
examine sampling error (i.e., natural variability) of parameter estimates and uncertainty (e.g., bias, 
variance) of estimates for the response variable. To do this, a large number of datasets are randomly 
generated from a fitted model. Each simulated dataset is then used to refit the model, all of which are 
used to produce sampling distributions for model parameters and chosen fit statistics. Lastly, simulation 
results are compared to the global model to identify whether assumptions are met and if the chosen 
statistical model is a reasonable representation of the system (Harrison 2014; Kéry & Royle 2015).  
   
Step 5: Model selection and evaluation 
 
A two-step procedure will be used to select the most parsimonious model and evaluate its predictive 
performance. Model selection will first be used to identify which covariates best explain CSRB 
presence/absence and relative abundance and choose the best model for data inference. All candidate 
models will be ranked using Akaike Information Criteria corrected for small sample size (AICc). 
Differences in AICc scores will be used to calculate each candidate models weight (w) and the model 
with the lowest AICc score and highest w will be considered the best supported (Burnham & Anderson 
2002). Models within two AICc scores will be considered equally supported, unless variables in the top 
model are a subset of the competing models (i.e., uninformative parameters; Arnold 2010). Model 
averaging may be used if selecting a single final model is not warranted.  
 
Using the final model selected, predictive performance of each model will be further evaluated to 
examine how they generalize to new data. Resampling procedures (e.g., k-fold cross-validation, 
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bootstrapping) will be used to simulate new data and estimate out-of-sample predictive error. For each 
resampling iteration, a subset of the data is used to train the model, and the remaining data is used to 
independently examine model accuracy, which in total estimates mean generalization error (Hastie et al. 
2009). Predictive performance for each model could be assessed with any of the following metrics: 
 

1. Presence/absence model 
a. Area under the receiving operating curve (AUC) 
b. Sensitivity 
c. Specificity 
d. True skill statistic 

2. Relative abundance model 
a. Correlation 
b. Root mean squared error 
c. Mean absolute error 
d. R2 

 
Step 6: Model interpretation 
 
Summary statistics will be presented for each model fit with the full dataset, which will include 
estimated variance for random effects and estimated coefficients for the fixed effects included in the 
final model selected. Generalization error will also be summarized based on mean (± error) out-of-
sample predictive performance. Relative importance (0-1) of each fixed effect will be calculated based 
on AICc w. Partial dependence plots will also be built to compare the strength of response-fixed effect 
relationships and display spatiotemporal population trends throughout the study duration.  
 
These results will help facilitate a critical post-study review and recommendations for future research. 
For example, identifying specific data points with the largest predictive error may elucidate what 
components of the model failed to distinguish signal from noise and suggest how future work can 
improve predictive accuracy. Partial dependence plots may also show whether the environmental 
covariates used are ecologically rationale and identify covariates that have strong functional 
relationships with CSRB occurrence or abundance. Ultimately, we will compare the results of the GLMM 
to those of the N-mixture model. 
 
Other considerations 
 
Lure efficacy considerations 
 
Although the GLMM does not require lure-efficacy data, understanding lure efficacy could be useful for 
estimating the population size at Comal Springs. Efficacy (E) can be interpreted from a recent luring 
study (BIO-WEST 2021); even though there were adverse conditions for each of the trials, results 
indicated that 0 – 80 % of the beetles would reside on cotton, with an average of ca. 20 %. This 
information could be used as a means of estimating the number of beetles in the vicinity of a lure and 
therefore, one adult observed on a lure during a check could be interpreted as four others in the vicinity 
(total of five adults). However, this cannot be done for larvae as it is expected that their movements are 
less than that of adults. 
 
Additionally, we plan to place 5 lures (separated by the length of a lure) at select locations where large 
numbers of H. comalensis are expected to be found. After ca. 30 days of conditioning, the number of 
beetles will be counted among those lures. The beetles will be replaced and a single lure will be placed 
in the middle of where the set of five was and the lure will be inspected ca. one week later as a means of 
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developing field-based E that may also be useful for larvae. We plan to do this for at least 3 separate 
spring locations that are not part of the study sample sites. However, this is not a major focus of the 
study since the results may not be useful (i.e., in the event that no beetles are retrieved from the single 
lure). 
 
Beetles per unit area 
 
A simplistic approach to estimating the population size of H. comalensis is to take the fraction of the 
overall area sampled and extrapolate the number of beetles sampled to the total area of spring activity 
(corrected by lure efficacy) where a is the proportion of spring area sampled by the entire set of lures 
per sampling event with a given E, the surficial population N can be estimated based on the total 
number of sampled individuals n: 

𝑁𝑁 =
𝑛𝑛

𝑎𝑎 × 𝐸𝐸
 

 
If for instance a survey in a single sampling event finds 1,000 adults among 80 lures that represent 20% 
of the surficial spring area (a) and E is considered 20% effective, the total estimate of adults at the near 
surface would be 25,000. The coefficients a and E can be adjusted at later times as better information 
becomes available. 
 
Biofilm considerations 
 
The quality of the biofilms that form on the poly-cotton lures are thought to be an important factor with 
regard to the attraction of the beetles to the lures. Preliminary work by Dr. Camila Carlos-Shanley 
indicated that the biofilms found on these lures can be highly variable in terms of bacteria taxa and 
relative abundances of those taxa (personal communication). Having a diverse community of bacteria 
per lure elicits many metric measures that can be delineated as covariates of riffle beetle presence and 
abundance. The extraction of such data would require the expense of genomic sequencing for each lure 
and the time for a technician/student to perform the bioinformatics. However, the lures can be kept in 
95% EtOH and stored for a few years. We would like to offer the service of saving these biofilms if there 
is an interest in pursuing this type of data acquisition in the future. It is also noted that a better 
understanding of the microbial community affiliated with H. comalensis could also help focus habitat 
restoration efforts. 
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Map 1a. Map of Comal Springs and randomly selected sites for sampling Heterelmis comalensis. 
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Map 1b. Map of Comal Springs and randomly selected sites for sampling Heterelmis comalensis. 



 

13 
 

 
Map 1c. Map of Comal Springs and randomly selected sites for sampling Heterelmis comalensis. 
 



 

14 
 

 

 
Map 1d. Map of Comal Springs and randomly selected sites for sampling Heterelmis comalensis. 


