South Central Texas Regional Water Planning Area

Prepared by:

South Central Texas Regional Water Planning Group

With administration by:

San Antonio River Authority

With technical assistance by:

HDR Engineering, Inc.

Moorhouse Associates, Inc.

Open Forum

In association with:
Paul Price Associates, Inc
LBG-Guyton Associates
R.J. Brandes Company
The Wellspec Company

South Central Texas Regional Water Planning Area

Regional Water Plan

Volume II — Technical Evaluations of Alternative Regional Water Plans

Prepared by:

South Central Texas Regional Water Planning Group

With administration by:

San Antonio River Authority

With technical assistance by:

HDR Engineering, Inc.
Moorhouse Associates, Inc.
Open Forum

In association with:

Paul Price Associates, Inc. LBG-Guyton Associates R.J. Brandes Company The Wellspec Company

January 2001

Contents

Executive Summary

- 1. Description of Region
- 2. Population and Water Demand Projections
- 3. Evaluation of Current Water Supplies
- 4. Comparison of Supply and Demand
- 5. Regional, County, City, Water User Group, and Major Water Provider Plans
- 6. Additional Recommendations/Conservation Guidelines
- 7. Plan Adoption

Appendices :

- A. Irrigation Projection Methodology
- B. General Procedures and Assumptions for Technical Evaluations
- C. Reliability Information for Water Rights in the **South Central Texas Region**

Contents

Evaluations of Alternative Regional Water Plans II: Technical

Volume

Volume I: Executive Summary

and Regional Water Plan

- 1. Introduction
- 2. Planning Unit (PU) Alternative
- 3. Environmental/Conservation (EC) Alternative
- 4. Economic/Reliability/Environmental/Public Acceptance (EREPA) Alternative
- 5. Inter-Regional Cooperation (IRC) Alternative
- 6. Recharge & Recirculation (R&R) Alternative
- General Comparisons
- **Environmental Assessment and Comparisons**

Contents

1. Local/Conservation/Reuse/Exchange Options

- 2. Edwards Aquifer Recharge Options
- 3. River Diversions with Storage Options
- 4. Existing Reservoir Options
- 5. Potential New Reservoir Options
- 6. Carrizo and Other Aquifer Options

Appendices

- A. Cost Estimating Procedures
- B. Environmental Water Needs Criteria of the **Consensus Planning Process**
- C. Technical Evaluation Procedures for Edwards Aquifer Recharge Enhancement Options
- D. Threatened and Endangered Species by County
- E. Threatened and Endangered Species Related to **Edwards Aquifer**
- F. Application of Consensus Environmental Criteria

Jolume III: Technical Evaluations of Water Supply Options

This Page Intentionally Blank

South Central Texas Regional Water Planning Area Regional Water Plan

Ms. Evelyn Bonavita, Chair	Mr. Bruce T. Foster
Public Representative	Agricultural Representative
Mr. Richard Eppright, Vice-Chair	Ms. Susan Hughes
Agricultural Representative	Environmental Representative
Mr. Fred Pfeiffer, Secretary	Ms. Gloria Rivera
River Authorities Representative	Small Business Representative
Mr. Mike Mahoney	Dr. Darrell Brownlow
Water Districts Representative	Small Business Representative
Mr. Douglas R. Miller	Mr. Mike Fields
Small Business Representative	Electric Generating Utilities Representative
Judge Charles Johnson	Mr. Bill West
County Representative	River Authorities Representative
Commissioner John Kight	Mr. Con Mims
County Representative	Nueces River Authority
Mr. Mike Thuss	Mr. Greg Ellis
Municipal Representative	Water Districts Representative
Mayor Gary Middleton	Mr. Tom Moreno
Municipal Representative	Water Districts Representative
Mr. Pedro Nieto	Mr. Ron Naumann
Municipal Representative	Water Utilities Representative
Mr. Hugh Charlton	As adopted by the South Central Texas
Industry Representative	Regional Water Planning Group on this date

South Central Texas Regional Water Planning Area Regional Water Plan

Herbert W. Grubb, PhD, Senior Vice President
HDR Engineering, Inc.

Samuel K. Vaugh, P.E., Professional Associate HDR Engineering, Inc.

Larry F. Land, P.E.
HDR Engineering, Inc.

ADRIAN J. HUCKABEI

David D. Dunn, P.E. HDR Engineering, Inc.

Kelly D. Payne, P.E. HDR Engineering, Inc.

1.0 Introduction

The South Central Texas Regional Water Planning Group (SCTRWPG) has employed a planning process (Figure 1-1) focused on the development of a Regional Water Plan to meet the needs of every water user group in the region for a period of fifty years. Given the history of sharp and divisive conflict concerning water planning in this region, the planning process has provided extraordinary opportunities for participation by water user groups in providing input to achieve the goal of a plan that will "provide for the orderly development, management, and conservation of water resources..." 31 TAC 357.5(a). To build consensus among the constituencies represented by the members of the SCTRWPG, the planning process has emphasized the coordination and careful integration of technical information with information provided through public participation.

Figure 1-1. Planning Process

Conflict over the past several decades in this region has focused on how to manage the Edwards Aquifer so as to meet the needs of many water user groups. Central to progress in resolving this conflict, and thus in achieving the formulation of a water plan acceptable to all constituencies represented in the SCTRWPG, is the assurance that all of the different competing strategies for meeting water needs will be given consideration. It has thus been central to the viability of the planning process itself that the evaluation of water supply options and combinations of these options in the context of a regional plan receive extraordinary attention.

To this end, the SCTRWPG has employed a planning process that ensures evaluation of virtually all the water supply options or management strategies that have been proposed or discussed in the past, together with several new ones that have never before been subjected to technical evaluation. To achieve confidence by all constituencies in the planning process, it has been necessary to evaluate the options both on a stand-alone basis (Volume III – Technical Evaluations of Water Supply Options) and in various combinations in the context of alternative plans (Volume II – Technical Evaluations of Alternative Regional Water Plans). Given the fact that some of the proposed strategies for regional management are at odds with one another, it has been important to look at a series of alternative regional water plans. By formulating five alternative regional water plans, the SCTRWPG has carefully considered many diverse management strategies. In keeping with logical and acceptable planning methods, the SCTRWPG has taken the best components of these alternative plans and developed a Regional Water Plan (Volume I – Executive Summary and Regional Water Plan).

The alternative regional water plans formulated by the SCTRWPG are identified as follows:

- Planning Unit (PU) Alternative
- Environmental/Conservation (EC) Alternative
- Economic/Reliability/Environmental/Public Acceptance (EREPA) Alternative
- Inter-Regional Cooperation (IRC) Alternative
- Recharge & Recirculation (R&R) Alternative

Technical evaluations of these alternative regional water plans are summarized in Sections 2 through 6 of this volume. In order of presentation, the tabbed section for each alternative plan includes:

- Location map
- Alternative plan description
- Summary of key information

- Unit cost, annual cost, and additional water supply by decade
- Projected drought water needs (shortages) and additional supplies by county
- Edwards Aquifer technical information
- Carrizo Aquifer technical information
- Streamflow technical information

General graphical comparisons of the five alternative plans and the Regional Water Plan are included in Section 7. Preliminary environmental assessments and comparisons considering each of the five alternative plans and the Regional Water Plan are described and summarized in Section 8.

"Planning Unit" Alternative Regional Water Plan

South Central Texas Regional Water Planning Group

San Antonio River Authority

HDR Engineering, Inc. January 2001

South Central Texas Region Alternative Water Plans

Alternative Name: Planning Unit Regional Water Management Alternative Plan

Alternative ID: PU Approach (PUA)

Alternative Description: The Planning Unit Approach (PUA) includes water management strategies (options) that have been identified by water supply entities as acceptable to meet projected water needs. Major water providers and water supply entities providing documented input into this alternative regional plan included the San Antonio Water System (SAWS), the Bexar Metropolitan Water District (BMWD), the Edwards Aquifer Authority (EAA), the Guadalupe-Blanco River Authority (GBRA), and Canyon Regional Water Authority (CRWA). Also, water plan information provided to the SCTRWPG by other water suppliers of the South Central Texas Water Planning Region was included, as appropriate. From the lists of options/strategies provided by the entities mentioned above, options/strategies were selected for inclusion in this alternative regional plan that would meet the projected needs in a timely manner, and without duplication of options/strategies suggested by others. options/strategies are organized by county. In cases of projected need where no local entity has identified water management strategies, the nearest available option/strategy of the South Central Texas Regional Water Planning Group (SCTRWPG) were selected for inclusion in the Planning Unit Plan. The following water supply options/strategies are included in the Planning Unit Plan (in no particular order):

- 1. Demand Reduction / Conservation (L-10)
- 2. Edwards Irrigation Transfers (L-15)
- 3. Regional Aquifer Storage & Recovery (SCTN-1a)
- 4. Edwards Recharge Type 2 Projects (L-18a)
- 5. Simsboro Aquifer (SCTN-3c)
- 6. Carrizo Aquifer Wilson and Gonzales Counties (CZ-10C)
- 7. Carrizo Aquifer Gonzales and Bastrop Counties (CZ-10D)
- 8. Carrizo Aquifer Bexar County (BMWD)
- 9. Lower Guadalupe River Diversions (SCTN-16b)
- 10. Cibolo Reservoir (S-15C)
- 11. Carrizo Aquifer Local Supply (SCTN-2a)
- 12. Trinity Aguifer Bexar County (BMWD)
- 13. Canyon Reservoir (G-15C)
- 14. SAWS Recycled Water Program
- 15. Wimberley and Woodcreek Canyon (G-24)
- 16. Lockhart Reservoir (G-21)
- 17. Trinity Aquifer Optimization (SCTN-8)
- 18. Rainwater Harvesting (SCTN-9)
- 19. Weather Modification (SCTN-5)
- 20. Brush Management (SCTN-4)

This Page Intentionally Blank

Planning Unit Alternative Regional Water Plan Summary of Key Information for South Central Texas Regional Water Planning Group

Quantity, Reliability, and Cost

- Plan includes management supplies to meet projected needs, ensure reliability, and maintain springflow, resulting in a quantity of additional water supplies sufficient to meet projected needs for municipal, industrial, steam-electric power, and mining uses through the year 2050.
- Cost is greater than the average for the five alternative plans and the Regional Water Plan.

Environmental Factors

- Increased median annual streamflows in the San Antonio River.
- Most concerns with Vegetation & Wildlife Habitat among the five alternative plans under consideration.

Impacts on Water Resources

- No unmitigated reductions in water available to existing water rights.
- Long-term reductions in water levels in the Carrizo Aquifer. Drawdown would be greater than the average for the five alternative plans under consideration.

Impacts on Agriculture and Natural Resources

- Major commitment to municipal and irrigation water Demand Reduction (Conservation) (L-10).
- Includes Brush Management (SCTN-4) and Weather Modification (SCTN-5).
- Inclusion of water supply options to meet projected irrigation needs in full is estimated to be economically infeasible at this time. Weather Modification (SCTN-5) assists irrigation and dry-land agriculture (crops and ranching).
- Includes maximum potential voluntary transfer of Edwards Aquifer irrigation permits to municipal permits through lease or purchase.

Other Relevant Factors per SCTRWPG

• Plan includes Cibolo Reservoir (S-15).

Comparison of Strategies to Meet Needs

• Selection of water supply options comprising the alternative plan based on preferences expressed by planning units or on closest available supply.

Interbasin Transfer Issues

• Projected non-irrigation needs in basin(s) of origin are met throughout the planning period.

Third-Party Impacts of Voluntary Redistribution of Water

- Potential positive or negative effects of Edwards Irrigation Transfers (L-15).
- Lower water levels in some portions of the Carrizo Aquifer.

Regional Efficiency

- Edwards Irrigation Transfers (L-15) require no new facilities. Transferred water would likely be available at or very near locations having projected municipal, industrial, steam-electric power, and mining needs in Uvalde, Medina, Atascosa, and Bexar Counties.
- Balancing storage and regional water treatment facilities in Bexar County increase efficiency, improve reliability, and reduce unit cost.
- San Antonio Water System Regional Aquifer Storage & Recovery System (SCTN-1a) substantially reduces peak summer pumpage from the Edwards Aquifer.
- Consider reduced storage capacity for Cibolo Reservoir or include diversions from the San Antonio River to increase supply and moderate unit cost.

Effect on Navigation

• Not applicable.

South Central Texas Region, Planning Unit Alternative – TWDB Evaluation Criteria Summary

Management Strategy	Quantity (acft/yr)1	Reliability ²	Cost (S/acft)3		Environmental Factors	_	Impacts on Water Resources	Impacts on Agricultural and Natural Resources	Other Relevant Factors per SCTRWPG
Municipal Demand Reduction (Conservation) (L-10 Mun.)	44,566	Firm	\$173	•	None. Supply developed through demand reduction.		Slight reductions in treated effluent discharge.	 Fewer water management strategies necessary to meet projected needs 	Conservation is a central element of the Plan.
Edwards Irrigation Transfers (L-15)	81,000	Firm	. \$80	•	None. Supply developed without new fac	ilities.	pumpage closer to springs.	 Plan includes 100 percent of potential of max, voluntary transfer through lease or purchase. 	Encourages beneficial use of available rights.
Edwards Recharge – Type 2 Projects (L-18a)	21,577	Firm	\$1,087		Concerns with endangered & threatened species, habitat, and TPWD Ecologically Unique Stream Segments at some sites. Enhanced springflows help endangered st	ecies.	Limited, as most projects are located on streams that are frequently dry. Increased aquifer levels and springflows.	Medina Counties.	Positive effects on discharges from Comal and San Marcos Springs. Mitigation of impacts on firm yield of Choke Canyon Res. / Lake Corpus Christi System.
Canyon Reservoir – River Diversion (G-15C)	15,000	Firm	\$794		Minimal. Canyon Reservoir is an existing resource.		 Increased instream flows associated with downstream deliveries of water supply. 	Not applicable.	Encourages beneficial use of existing reservoir. Recreational benefits with downstream delivery.
Canyon Reservoir - Wimberley & Woodcreek (G-24)	1,048	Firm	\$1,586		Minimal. Pipeline could encounter endan or threatened species habitat.	gered	Minimal, if any.	Not applicable.	Encourages beneficial use of existing reservoir.
Lower Guadalupe River Diversion (SCTN-16b)	63,117	Firm	\$1,033	•	Concerns with endangered & threatened species, habitat, cultural resources, and Ti Ecologically Unique Stream Segment.	'WD	 Some reductions in freshwater inflows to the Guadalupe Estuary associated with greater utilization of existing water rights and diversion of unappropriated flow. 	Minimal, if any.	Encourages beneficial use of available rights. Protects instream flows and recreational opportunities through lower basin diversion.
Carrizo Aquifer – Wilson & Gonzales (CZ-10C) ⁶	75,000	Firm	\$687	•	Minimal. Pipeline could encounter cultur resource sites.		Long-term reductions in well levels. Some reductions in instream flow at outcrop. Potential effects on discharge of small springs.	Minimal, if any.	 Planned withdrawals in excess of that expressed in policies of underground water conservation districts.
Carrizo Aquifer – Gonzales & Bastrop (CZ-10D) ⁶	58,500	Firm	\$1,066	•	Minimal. Pipeline could encounter cultur resource sites.	ıl	Long-term reductions in well levels. Some reductions in instream flow at outcrop. Potential effects on discharge of small springs.	Minimal, if any.	 Planned withdrawals in excess of that expressed in policies of underground water conservation districts.
Carrizo Aquifer - Local Supply (SCTN-2a)	13,700	Firm	\$343	•	Minimal, if any.		 Modest long-term reductions in aquifer levels. 	Minimal, if any.	
Simsboro Aquifer (SCTN-3c)	55,000	Firm	\$896	•	Concerns with endangered & threatened species, habitat, and cultural resources.		Long-term reductions in aquifer levels. Minimal reductions in instream flow at outcrop. Potential effects on discharge of small springs.	Minimal, if any.	Beneficial use of groundwater now unused. Planned Bastrop Co. supply for Region L exceeds 2030 availability per Region K.
SAWS Recycled Water Program (SAWS)	52,215	Firm	\$395	•	None. Water supply derived from increas volumes of treated wastewater.	td	Minimal, if any.	Not applicable.	Encourages beneficial use of available resource.
Purchase of Water From Major Provider (PMP)	8,000	Firm	Variable	•	Minimal, if any. Supply developed as par other water management strategies.	of	Minimal, if any.	Not applicable.	=
Cibolo Reservoir (S-15c)	31,500	Firm	\$1,036		Concerns with habitat and cultural resource	cs.	 Reduced streamflow immediately below dam. 	Minimal.	Substantial organized local opposition.
Lockhart Reservoir (G-21)	6,048	Firm	\$1,361	•	Concerns regarding habitat & cultural resources.		Reduced streamflow immediately below dam.	Minimal.	Questions regarding economic feasibility. Strong local government support.
Trinity Aquifer Optimization (SCTN-8)	390	Firm	\$1,885		Concerns with water quality & aquatic ha	itat.	Minimal reductions in instream flow. Locally increased aquifer levels.	Minimal, if any.	
Aquifer Storage & Recovery (ASR) - (SCTN-la)	Unquantified	Firm	Unquantified	•	Minimal. Pipeline could encounter impor habitat or encounter cultural resource sites		 Reduced peak summer pumpage from Edwards Aquifer increases aquifer levels and springflow. 	Not applicable.	 SAWS South Bexar County ASR presently in implementation phase.
Carrizo Aquifer Bexar & Guadalupe (BMWD) 4	3,000	Firm		200	是我是一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的一个人的	100000	2000年2月1日 - 1900年 - 1	是是是1966年1月1日,1988年1月日本中国	Comment of the second
Trinity Aquifer – Bexar (BMWD) ⁴	1,000	Firm		5 500	40000000000000000000000000000000000000	HISSO			
Brush Management (SCTN-4)	Unquantified	Unknown	Unquantified	•	Concerns regarding endangered & threate species, vegetation & wildlife habitat, and cultural resources.		 Potential benefit to Edwards Aquifer due to increased water for recharge. 	Potential improvement of pasture for grazing.	Additional studies needed to determine quantity of dependable supply during drought.
Weather Modification (SCTN-5)	Unquantified	Unknown	Unquantified		Potential increases in water supply for will habitat.	llife	 Potential increases in rainfall, runoff, and aquifer recharge. 	 Provides water for irrigated and dry-land agriculture (crops & ranching). 	Concerns regarding increased flood potential.
Small Aquifer Recharge Dams	Unquantified	Unknown	Unquantified		Small potential effects on habitat.		 Potential increases in local aquifer levels. 	Minimal, if any.	
Rainwater Harvesting (SCTN-9)	Unquantified	Unknown	Unquantified		Minimal, if any.		Minimal, if any.	Not applicable.	Consistent with conservation focus of Plan.
Total of New Supplies ⁵	530,661								

South	Central	Texas	Region,	Planning	Unit	Alternative -	TWDB	Evaluation	Criteria S	Summary	(Continued)

Management Strategy		Comparison of Strategies to Meet Needs		Interbasin Transfer Issues		Third-Party Impacts of Voluntary Transfers		Regional Efficiency		Effect on Navigation
Municipal Demand Reduction (Conservation) (L-10 Mun.)	:	Low unit cost. Inherent environmental benefits.	•	Not applicable.	•	Not applicable.	•	Implementable throughout the region.	•	None
Edwards Irrigation Transfers (L-15)	•	Low unit cost.	•	Not applicable.		Maximum transfer may have potential socio- economic impacts to third parties.	•	Requires no new facilities.	•	None
Edwards Recharge - Type 2 Projects (L-18a)	•	Project unit costs range from low to high.	•	Not applicable.	•	Not applicable.	•	Requires no new transmission and treatment facilities.	•	None
Canyon Reservoir - River Diversion (G-15C)	•	Moderate unit cost.	•	Not applicable.		Not applicable.		Significant additional surface water supply without construction of a new reservoir.		None
Canyon Reservoir - Wimberley & Woodcreek (G-24)	•	High unit cost, but options to meet needs are limited.	•	Not applicable.	•	Not applicable.	•	Additional surface water supply without construction of a new reservoir.	•	None
Lower Guadalupe River Diversion (SCTN-16b)	•	Moderate to high unit cost.	•	Not applicable with diversion facilities located in San Antonio River Basin.	•	Not applicable.	:	Shared pipeline alignment with other strategies. Shared water treatment and balancing storage facilities in Bexar County.	•	None
Carrizo Aquifer - Wilson & Gonzales (CZ-10C) ⁶	•	Moderate unit cost.	•	Not applicable.	•	Transfer rate could have potential socio- economic impacts to third parties.	•	New supply proximate to Bexar County.		None
Carrizo Aquifer - Gonzales & Bastrop (CZ-10D) ⁶	•	Moderate to high unit cost.	٠	Not applicable.		Transfer rate could have potential socio- economic impacts to third parties.		New supply reasonably proximate to Comal, Guadalupe, and Hays Counties.		None
Carrizo Aquifer - Local Supply (SCTN-2a)		Low unit cost.		Not applicable.		Not applicable.		New supply proximate to points of need.		None
Simsboro Aquifer (SCTN-3c)	1.	Moderate unit cost.	•	Not applicable.	•	Limited transfer to avoid potential socio- economic impacts to third parties.	•	Beneficial use of groundwater presently produced, but unused.		None
SAWS Recycled Water Program (SAWS)		Low to moderate unit cost.		Not applicable.		Not applicable.		New supply proximate to points of need.		None
Purchase of Water From Major Provider (PMP)		Low to moderate unit cost.		Not applicable.	•	Not applicable.		Economy of participation in regional projects.		None
Cibolo Reservoir (S-15c)	•	Moderate to high unit cost.	•	Not applicable.	•	Not applicable.	•	Substantial storage capacity proximate to Bexar County.	•	None
Lockhart Reservoir (G-21)	• 1	High unit cost.	•	Not applicable.	•	Not applicable	•	Shared pipeline alignment with Lower Guadalupe River Diversion (SCTN-16)	•	None
Trinity Aquifer Optimization (SCTN-8)		High unit cost.		Not applicable.				Implementable at various locations.		None
Aquifer Storage & Recovery (ASR) - (SCTN-1a)	•	Effective means of reducing peak summer pumpage from the Edwards Aquifer.	•	Not applicable.		Not applicable.	•	Increases reliability of current supply from the Edwards Aquifer.	•	None
Carrizo Aquifer - Bexar & Guadalupe (BMWD) 4			183	(1) · 在工作的,	135		理論は			
Trinity Aquifer - Bexar (BMWD) ⁴		产生的第三人称单数 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	355					是1950年第二日的日本(1960年)。 1960年第二日的日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日	- CA	F-9-82-9-530
Brush Management (SCTN-4)	•	Insufficient information at this time.	•	Not applicable.		Not applicable.	•	May contribute positively to storage and system management of supplies.		None
Weather Modification (SCTN-5)	•	Potentially feasible management strategy to meet a portion of projected irrigation needs.	•	Not applicable.		Not applicable.	•	May contribute positively to storage and system management of supplies.		None
Small Aquifer Recharge Dams		High unit cost.	•	Not applicable.	•	Not applicable.	•	Implementable throughout the region.	•	None
Rainwater Harvesting (SCTN-9)		High unit cost; comparable to domestic well.	•	Not applicable.		Not applicable.		Implementable throughout the region.	•	None

Notes:

1) Quantity based on full implementation and utilization of new supplies in year 2050.

2) Firm reliability indicates that new supply is dependable in a drought of record with full implementation of the Alternative Plan.

3) Unit cost based on full utilization of supply at ultimate capacity of planned facilities and includes treatment and distribution facilities necessary to meet peak daily needs.

4) Management strategies are in implementation phase and have associated cost in plan.

5) Management strategies in the implementation phase include Schertz-Seguin Water Supply Project, Western Canyon Regional Water Supply Project, Lake Dunlap WTP Expansion and Mid-Cities Project, and GBRA Canyon Reservoir Contract Renewals. Supplies associated with these management strategies were counted as current supply in the technical application of alternative project, and the supplies associated with these management strategies were counted as current supplies in the technical application of alternative project, and the supplies associated with these management strategies were counted as current supplies in the technical application of alternative project, and the supplies associated with these management strategies were counted as current supplies in the technical application of alternative project, and the supplies associated with these management strategies were counted as current supplies. supply in the technical evaluation of alternative regional water plans.

6) Subsequent to the technical evaluation of alternative regional water plans, quantity associated with this management strategy was limited in the Regional Water Plan in view of policies

of underground water conservation districts.

Planning Unit Alternative Regional Water Plan Unit Cost of Cumulative Additional Water Supply

Planning Unit Alternative Regional Water Plan Annual Cost of Cumulative Additional Water Supply

Planning Unit Alternative Regional Water Plan Cumulative Additional Water Supply

Planning Unit Alternative Regional Water Plan Atascosa County

Planning Unit Regional Water Management Alternative Plan

South Co	entral Texas Region						Co	unty = A	tascosa
County S	ummary of Projected Water Needs (Shorta	ges) and Wat	er Manag	ement St	rategies		(Jser Grou	p(s) = all
Projected	Water Needs (acft/yr)						1		
. 10,0000	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		325						140168
	Industrial		323						
	Steam-Electric		ŏ	I					
	Mining		ŏ					1,239	
	trrigation		38,418	36,718	35,170			40,713	
-	Total Needs		38,743			45,189			
	Mun, Ind, S-E, & Min Needs		325			1,463			
	Irrigation Needs		38,418				42,190		
	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		356	384	411	259	300	319	1
L-15	Edwards Irrigation Transfers	81,000	500	500	500	500	700	700	2, 3, 4
SCTN-2a	Carrizo Aquifer - Local Supply					1,000	3,000	10,000	2, 3, 4 5, 6
									
SCTN-4	Brush Management			 					7
SCTN-5	Weather Modification		· · · · · · · · · · · · · · · · · · ·		<u> </u>				7
SCTN-9	Rainwater Harvesting						·		
	Small Aquifer Recharge Dams			1					7
L-10 (lrr.)	Demand Reduction (Conservation)		3,692	3,692	3,692	3,692	3,692	3,692	
	Total New Supplies		4,548	4,576	4,603	5,451	7,692	14,711	
	Total System Mgmt. Supply / Deficit		-34,195	-32,508	-30,968	-39,738	-37,641	-36,332	
	Mun, Ind, S-E, & Min System Mgmt. Supply /	_	-34, 185 531			-38,738 296		-30,332 689	
	Deficit		331	310	310	250	007	000	
	Irrigation System Mgmt. Supply / Deficit		-34,726	-33,026	-31,478	-40,034	-38,498	-37,021	i
Notes:									
MOTAR:	Candidate New Supplies shown for year 2000 are identifi	ed for adority ima	ementation	but will not be	e available im	medialely			
1	Demand Reduction (Conservation) strategies assumed la	raely reflected in	projected wa	ler demands	a available iii	inconstary.	ļ		
<u>2</u> 3	Candidate New Supply to be shared among Uvalde, Med	ina. Atascosa, an	d Bexar Cou	nties. Supply	may not be	eliable in dro	ought.		
3	Pursuant to draft EAA Critical Period Management rules.	Candidate New S	upply repres	ents approxir	nately 85 pen	cent of			
	the estimated maximum potential annual transfer (95,430	acti) based on P	roposed Perr	nits prorated	to 400,000 at	:tuyr.	ļ		
5	Additional Edwards supply is for City of Lytle. Additional Carrizo supply is for Steam-Electric and Mining	11160	ļ						
<u> </u>	Early implementation of facilities assumed in cost estimat	on to ensure suff	icient supply	dudna dreije	ht.				
Ť	Option expected to provide additional water supply in mar	ny years, but depo	endable supp	oly during dro	ught is preser	ntly unquanti	fied.		
8	Estimates based upon use of LEPA systems on 50 perce	nt of acreages im	gated in 199	7, with conse	vation at 20	percent of Im	igation		
	application rate.								

Planning Unit Alternative Regional Water Plan Bexar County

Planning Unit Regional Water Management Alternative Plan

JOBBI COMB	al Texas Region				l				ty = Bexa	
County Sum	mary of Projected Water Needs (Shortages) and \	Nater Managem	ent Strateg	ies		,		User Gro	up(s) ≈ a	
rolected W	ater Needs (acft/yr)		1		1					
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes	
	Municipal		122,867	154,495	196,301	262.070	315,633	353,309	110103	
	Industrial		0	0	190,301	1,430	4,759	8,192		
	Steam-Electric		0	ŏ	ő	1,430	0	0,152		
	Mining		4,983	4,936	5,201	5,406	5.645	5.962		
	Impalion		22,575	20,374	19,585	19,015	18,385	17,368		
	Total Needs		150,405	179,805	221,087	287,921	344,422	384,831		
	Mun, Ind, S-E, & Min Needs		127,830	159,431	201,502	268,906	326,037	367,463		
	Irrigation Needs		22,575	20,374	19,585	19,015	18,385	17,368		
			22,313	20,374	18,303	13,013	10,303	17,300		
	gement Strategies (acft/yr)	Candidate								
D#	Description	New Supply	2000°	2010	2020	2030	2040	2050	Notes	
-10 (Mun.)	Demand Reduction (Conservation)		33,528	42,509	41,210	36,533	38,834	40,934		
-15	Edwards Irrigation Transfers	81,000	50,000	55,000	60,000	65,000	70,000	71,300	2,	
CTN-3c	Simsboro Aquifer	55,000	55,000	55,000	55,000	55,000	55,000	55,000		
Z-10C	Carrizo Aquifer - Wilson & Gonzales	75,000	40,000	50,000	60,000	70,000	75,000	75,000	4,	
	Carrizo Aquifer (Bexar Co.) - BMWD	3,000	3,000	3,000	3,000	3,000	3,000	3,000		
	Trinity Aquifer (Bexar Co) - BMWD	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
	SAWS Recycled Water Program			19,826	26,737	35,824	43,561	52,215	7, 1	
-18a	Edwards Recharge - Type 2 Projects	21,577		21,577	21,577	21,577	21,577	21,577		
CTN-16b	Lower Guadalupa River Diversions	63,177			63,177	63,177	63,177	63,177		
-15C	Cibolo Reservoir	31,500					31,500	31,500		
CTN-1a	Aquifer Storage & Recovery - Regional									
CTN-4	Brush Management								1	
CTN-5	Weather Modification							•	10	
CTN-9	Rainwater Harvesting								1	
	Small Aquifer Recharge Dams								10	
10 (lm.)	Demand Reduction (Conservation)		4,521	4,521	4,521	4,521	4,521	4,521	1	
	Total New Supplies		187,049	252,433	336,222	355,632	407,170	419,224		
	Total System Mgmt. Supply / Deficit		38,644	72,628	115,135	67,711	62,748	34,393		
	Mun, Ind, S-E, & Min System Mgmt. 8		54,698	88,481	130,199	82,205	76,612	47,240		
	Irrigation System Mgmt. Supply / Deficit		-18,054	-15,853	-15,084	-14,494	-13,864	-12,847		
	urigation dystem mante dupply reducti		-10,000	-10,000	-10,000	-14,404)	-19,004	-12,047		
otes:	O- tidat No. O - tida hara for any 2000 and ideal/ford	las adadt i baslassa	-101/00 000	14 5	his immediate					
	Candidate New Supplies shown for year 2000 are identified Demand Reduction (Conservation) strategies assumed large	tor priority impleme:	nistion, but wi	not be avana	ore commediate	<u> </u>				
	Candidate New Supply to be shared among Uvalde, Medina.				of be reliable i	in drought.				
	Pursuant to draft EAA Critical Period Management rules, Co. (195.430 acft) based on Proposed Permits prorated to 400,00	ndidate New Supply	represents a	pproximately 6	5 percent of t	he estimated	maximum pot	launna laitne	transfer	
	Effects on regional aquifer levels to be quantified.									
	Includes non-interruptible supplies identified by BNWD in Weter Supply Program of 1/31/2000.									
	Non-interruptible supplies identified by BMWD in Water Supp	Ny Program of 1/31	72000.	la cational - 4						
			(Ozluti Byllanı	nı 62mine160 l	iecos.					
	Current SAWS Recycled Water Program is included in the 2	on one of meeting	20 nercent of	SAWS and	ted water des	nand				
	Future use of recycled water for non-potable uses and based	on goal of meeting	20 percent of	SAWS projec	abd water der	nand. Ier demands.	•			
0	Future use of recycled water Program is included in the 24 Future use of recycled water for non-potable uses and bases SAWS ASR program in southern Bexar County increases rel Option expected to provide additional water supply in many Estimates based upon use of LEPA systems on 60 percent of the country of the count	on goal of meeting lability of Edwards rears, but depended	20 percent of Aquiler supply ole supply duri	SAWS project and reduces and drought is	ded water den seasonal aqui presently ung	fer demands. uantified.				

Planning Unit Alternative Regional Water Plan Caldwell County

	ntral Texas Region							County =	Caldwe
County	Summary of Projected Water Needs (Short	ages) and W	ater Manag	gement St	trategies			User Gro	up(s) = a
relected	Motor Noods (seffice)							_	·-
rojecteu	Water Needs (acft/yr)		2000	2010	2020	2030	2040	2050	Mater
	User Group(s)								Notes
	Municipal Industrial		0	188	393	668	714	737	
	Steam-Electric		ö	0			0	0	
	Mining	·	- 0	<u>ol</u>	- 6 -		- 0		
	Imgation			<u> </u>			<u></u>		
	Total Needs		ŏ	188	393	668	714	737	
	Mun, Ind, S-E, & Min Needs		ŏ	188	393	668	714	737	
	Irrigation Needs		Ō	0	0	000	0	<u></u>	
	iii gatan maaa					•	Ů,		
Vater Man	agement Strategies (acft/yr)	Candidate		1					
D#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
-10 (Mun.)	Demand Reduction (Conservation)		195	208	218	82	93	104	
-21	Lockhart Reservoir			6.048	6,048	6.048	6.048	6.048	
			[
	Small Aquifer Recharge Dams		<u> </u>						
-10 (lm.)	Demand Reduction (Conservation)		i						
			127			2 122			
	Total New Supplies	· · · · -	195	6,254	6,266	6,130	6,141	6,152	
	Total System Mgmt, Supply / Deficit		195	6,066	5,873	5,462	5,427	5,415	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		195	6,066	5,873	5,462	5,427	5,415	
	Irrigation System Mgmt. Supply / Deficit		.,,,	0,000	3,073	0,402	0	3,413	
	inigation system ingint. Supply / Dencit		U	U ₁			U	U	
otes:							. 7		
	Damand Reduction (Conservation) strategies assumed largely re	eflected in projecte	d water demand	is.					
	Water supply for City of Lockhart and/or other users downstream		1.3.0. 000						
	Option expected to provide additional water supply in many year		supply during d	rought is orose	oth woo odifi				

Planning Unit Alternative Regional Water Plan Comal County

Planning Unit Regional Water Management Alternative Plan

South Ce	ntral Texas Region				T	····		County	= Coma
	mmary of Projected Water Needs (Shortages) a	nd Water Mana	gement S	trategies				User Grou	
Projected \	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,289	5,049	10,487	18,282	25,205	33,062	
	Industrial		1,388	1,425	1,486	1,737	2,009	2,289	
	Steam-Electric Mining		0 5,570	5,464	5,628	<u>0</u> 5,798	0 3.590	2,224	
	Irrigation		30	5,404 14	3,028 0	<u>5,780</u>	3,380	2,224	
			9,277	11,952	17,601	25,815	30,804	37,575	
	Total Needs								
	Mun, Ind, S-E, & Min Needs		9,247	11,938	17,601	25,815	30,804	37,575	
	Irrigation Needs		30	14	0	_ 0	0	0	
100	A Olivia de la Cida	0							
	agement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		616	718	848	718	824	942	
G-15C	Canyon Reservoir - River Diversion	15,000	15,000	15,000	15,000	15,000	15,000	15,000	
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop	90,000			3,500	12,000	16,500	23,000	3, 4,
	·								
	Small Aquifer Recharge Dams				i				
L-10 (lrr.)	Demand Reduction (Conservation)								
	Total New Supplies		15,616	15,718	19,348	27,718	32,324	38,942	
	Total System Mgmt. Supply / Deficit		6,339	3,766	1,747	1,903	1,520	1,367	·-···
	Mun, Ind, S-E, & Min System Mgmt. Supply /		6,369	3,780	1,747	1,903	1,520	1,367	
	Deficit								
	Irrigation System Mgmt. Supply / Deficit		-30	-14	0	0	0	0	
Notes:					41-4				
<u>-</u>	Candidate New Supplies shown for year 2000 are identified for Demand Reduction (Conservation) strategies assumed largely				e immediately. T	т			
1	Portion of Canyon firm yield (with amendment) diverted below		so water dem	mus.					
<u> </u>	Candidate New Supply to be shared among Comal, Guadalup		e Effecte on	regional acuif	er levels to be	mushlified			
<u> </u>	Portion of 90,000 activyr available from northern Gonzales and				U. 107019 10 00	Accimion.			
5	Early implementation of facilities assumed in cost estimation to				Ĭ				
6	Option expected to provide additional wat	er supply in many v	ears, but depe	ndable supply	during drough	t is presentiv	unquantified.		

Planning Unit Alternative Regional Water Plan Dimmit County

Planning Unit Regional Water Management Alternative Plan

South Cer	ntral Texas Region							County	= Dimmit
	mmary of Projected Water Needs (Shortages) an	d Water Mana	gement Str	ategies				User Gro	
Projected V	Water Needs (acft/yr)						_		
, rojoutou t	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		138	405	649	1,054	1,479	1.959	110103
··	Industrial		130	0	019		1,473	0	
	Steam-Electric		ö	- ŏ l	ŏ	- 6			
	Mining		Ö	ō	Ŏ	915	925	949	
	Irrigation		ō	Ō	O	2,133	1,737	1,331	
	Total Needs		138	405	649	4,102	4,141	4,239	
	Mun, Ind, S-E, & Min Needs		138	405	649	1,969	2,404	2,908	
	Irrigation Needs		0	0	0	2,133	1,737	1,331	
	i iiigation weeds		U)			2,100	1,137	1,001	
Water Man	agement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		131	144	156	104	118	133	
SCTN-2a	Carrizo Aquifer - Local Supply		500	1,000	1,000	2,500	3,000	3.500	2,
SCTN-4	Brush Management								
SCTN-5	Weather Modification		·	·				-	
SCTN-9	Rainwater Harvesting	_					1		
	Small Aquifer Recharge Dams								
L-10 (lm.)	Demand Reduction (Conservation)								
	Total New Supplies		631	1,144	1,156	2,604	3,118	3,633	
	Total System Mgmt. Supply / Deficit		493	739	507	-1,498	-1,023	-606	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		493	739	507	635	714	725	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	-2,133	-1,737	-1,331	
Notes:	Candidate New Supplies shown for year 2000 are identified for p	elacitu implomanta	ion but will not	ho available is		<u>:</u>			
	Demand Reduction (Conservation) strategies assumed largely re				шивовену.	₁			
1	Additional well(s) for Carrizo Springs and Mining supply.	auscraa iu brojecte	n water deways	J5.				,	
2	Early implementation of facilities assumed in cost estimation to	neura cufficiant cu	note during decr	ught .					
<u>3</u>	Option expected to provide additional water supply in many year	e hut desendable	enote dedes 4	rought is orose	othe unougation	L			· · · · ·

Planning Unit Alternative Regional Water Plan Frio County

South Ce	ntral Texas Region County Summary of Projected Water Needs (S	hortages) and	Water Man	agement S	trategies			Coun User Grou	ty = Fri
Burn W	County Summary of Projected Water Needs (S	nortages/ and	vvater ivian	agement o	trategies	Bred L		User Gro	1p(s) - 6
Projected '	Water Needs (acft/yr)					Second Internal of			
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0	0	0	0	0	0	
	Industrial		0	0	0	0	0	0	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	0	0	0	0	0	
	Irrigation		71,126	67,646	64,365	76,505	73,519	70,662	
	Total Needs		71,126	67,646	64,365	76,505	73,519	70,662	
	Mun, Ind, S-E, & Min Needs		0	0	0	0	0	0	
	Irrigation Needs		71,126	67,646	64,365	76,505	73,519	70,662	
Mater Man	agement Strategies (acft/ur)	Candidate	TOTAL DESIGNATION	(F) (1) (1)	The land of			10 200 12 - 14	
	agement Strategies (acft/yr)	THE RESIDENCE OF THE PARTY OF T	2000	2010	2020	2020	20.40	2050	Mataa
D#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
10 (Mun.)	Demand Reduction (Conservation)		184	195	205	116	121	124	
SCTN-4	Brush Management								
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
301113	Small Aquifer Recharge Dams								
L-10 (Irr.)	Demand Reduction (Conservation)		5,947	5,947	5,947	5,947	5,947	5,947	
	Total New Supplies		6,131	6,142	6,152	6,063	6,068	6,071	0.00
	Total System Mgmt. Supply / Deficit		-64,995	-61,504	-58,213	-70,442	-67,451	-64,591	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		184	195	205	116	121	124	
	Irrigation System Mgmt. Supply / Deficit		-65,179	-61,699	-58,418	-70,558	-67,572	-64,715	
Notes:				STATE OF THE STATE			100.00		
2	Demand Reduction (Conservation) strategies assumed largely re Option expected to provide additional water supply in many year	s, but dependable s	upply during dr	ought is preser					
3	Estimates based upon use of LEPA systems on 50 percent of ac application rate.	reages irrigated in 1	1997, with cons	ervation at 20	percent of irrig	ation			

Planning Unit Alternative Regional Water Plan Guadalupe County

	entral Texas Region					-	Co	unty = Gu	adalup
County St	ummary of Projected Water Needs (Shortages) a	nd Water Mana	gement St	rategies				User Grou	
Projected	Water Needs (acft/yr)		ŧ			,			
Fiolecied	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		29	23	30	71	87	773	140162
	Industrial		985	1,204	1,350	1,487	1.692	1,899	
	Steam-Electric			1,204	1,550	1,407	1,032	0	
	Mining		198	198	200	202	207	213	
	Irrigation		985	879	779	684	594	508	
···	Total Needs		2,195	2,304	2,359	2,444	2,580	3,393	
	Mun, Ind, S-E, & Min Needs		1,210	1,425	1,580	1,760	1,986	2,885	
	Irrigation Needs		985	879	779	684	594	508	
Water Mai	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		235	236	236	5	5	6	
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop	90,000	1,500	1,500	2,000	2,000	2,500	4,500	2, 3,
							<u>.</u>		
	<u> </u>								
									·
	Contraction Devices Device							<u>-</u>	
L-10 (lm.)	Small Aquifer Recharge Dams Demand Reduction (Conservation)								
L-10 (III.)	Demand Reduction (Conservation)		——						
		-							
	Total New Supplies		1,735	1,736	2,236	2,005	2,505	4,506	
	, , , , , , , , , , , , , , , , , , , ,		1,000	1,1.00	2,240	2,000		1,000	
-	Total System Mgmt. Supply / Deficit		-460	-568	-123	-439	-75	1,113	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		525	311	656	245	519	1,621	
	Irrigation System Mgmt. Supply / Deficit		-985	-879	-779	-684	-594	-508	
								· ·	
Notes:							I		
•	Candidate New Supplies shown for year 2000 are Identified for	priority implementati	on, but will not	be available in	mediately.				
1	Demand Reduction (Conservation) strategies assumed largely r								
2	Candidate New Supply to be shared among Comal, Guadalupe,	and Hays Counties	. Effects on re	gional aquifer i	evels to be qua	antified.			
3	Portion of 90,000 activyr available from northern Gonzales and s	southern Bastrop Co	unties under C	Z-10D.			1		
4	Early implementation of facilities assumed in cost estimation to						T		
5	Option expected to provide additional water supply in many year	rs, but dependable s	upply during d	rought is prese	ntly unquantific	ed.			

Planning Unit Alternative Regional Water Plan Hays County

Planning Unit Regional Water Management Alternative Plan

	ntral Texas Region							Count	y = Hays
County Su	immary of Projected Water Needs (Shortages) as	nd Water Mana	gement St	rategles				User Gro	up(s) = all
Projected !	Water Needs (acft/yr)								
Fiojecteu	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
									Notes
	Municipal Industrial		4,325 0	7,609 0	10,980	16,349 0	22,696 0	29,059	
	Steam-Electric				<u>ö</u> l				
	Mining		84	82	68	55	37	28	
·	Irrigation			0		0			
	Total Needs	-	4,409	7,691	11,048	16,404	22,733	29,087	
	Mun, Ind, S-E, & Min Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Irrigation Needs		0)	0	0	0	0	0	
Water Man	agement Strategies (acft/yr)	Candidate						Ī	C
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)	THE COPPLY	647	747	873	699	906	1,174	
CZ-10D	Carrizo Aquifar - Gonzales & Bastrop	90,000	4,000	7,000	10,500	16,000	22,000	31,000	2, 3,
G-24	Canyon Reservoir	1,048	1,048	1,048	1,048	1,048	1,048	1,048	
		.,,,,,	7,5 1.5						
	Small Aquifer Recharge Dams								
L-10 (lm.)	Demand Reduction (Conservation)								
		_							
~	Total New Supplies		5,695	8,795	12,421	17,747	23,954	33,222	
	Total System Mgmt. Supply / Deficit		1,286	1,104	1,373	1,343	1,221	4,135	.
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		1,286	1,104	1,373	1,343			
							1,221	4,135	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	
Notes:							•	, 1	
10168:	Candidate New Supplies shown for year 2000 are identified for	nindiv implementati	on hulwill not	he available i				<u></u>	
1	Demand Reduction (Conservation) strategies assumed largety re	effected in ornierlas	waler deman	le T			 		
2	Candidate New Supply to be shared among Comal, Guadalupe,	and Havs Counties	Effects on re	nional aquifer	levels to be ou	entified	···		
3	Portion of 90,000 active available from northern Gonzales and s	outhern Bastron Co	unties under C	Z-10D.	1				
4	Early implementation of facilities assumed in cost estimation to					i			
5	Candidate New Supply for Wimberley and Woodcreek.		1						
6	Option expected to provide additional water supply in many year	s, but dependable s	h enhub vlaau	rought is pres	nily unquantifi	ied.			

Planning Unit Alternative Regional Water Plan Kendall County

South Ce	ntral Texas Region							County =	= Kendall
County Su	immary of Projected Water Needs (Shortages) a	nd Water Mana	gement St	rategies		1			up(s) = all
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		1,070	1,560	2,808	4,099	5,578	7,518	
	Industrial		2	3	4	4	5	6	
	Steam-Electric		Ö	0	0	0	0	0	
	Mining		0	0	0	0	0	0	
,	Irrigation		0	0	0	0	0	0	
	Total Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Mun, Ind, S-E, & Min Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Irrigation Needs		0	0	0	0	0	0	
Water Mar	nagement Strategies (acft/yr)	Candidate				Ì			
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		67	71	71	11	11	11	1
	Purchase Water from Major Provider		2,000	2,000	3,000	5,000	6,000	8,000	2, 3
SCTN-8	Trinity Aquifer Optimization	390	390	390	390	390	390	390	
			· · · · · · · · · · · · · · · · · · ·						
SCTN-4	Brush Management								
SCTN-5	Weather Modification								<u> </u>
SCTN-9	Rainwater Harvesting								
999	Small Aquifer Recharge Dams								4
L-10 (Irr.)	Demand Reduction (Conservation)					· · · · · · · · · · · · · · · · · · ·			
	Total New Supplies		2,457	2,461	3,461	5,401	6,401	8,401	
				_,,	e, is i	0,10		0,10,1	
	Total System Mgmt. Supply / Deficit		1,385	898	649	1,298	818	877	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		1,385	898	649	1,298	818	877	
	Irrigation System Mgmt. Supply / Deficit		Ō	0	0	0	0	Ö	
	g							•	
Notes:			1		1	-			
•	Candidate New Supplies shown for year 2000 are identified for	priority implementati	on, but will not	be available in	nmediately.				
1	Demand Reduction (Conservation) strategies assumed largely n	eflected in projected	water demand	is.					
2	Assumed purchase from Bexar County major provider. Kendali				ounty table.				
3	Early implementation of facilities assumed in cost estimation to								
4	Option expected to provide additional water supply in many year	rs, but dependable s	supply during d	rought is prese	ently unquantif	ied.			

Planning Unit Alternative Regional Water Plan Medina County

Planning Unit Regional Water Management Alternative Plan

South Ce	entral Texas Region							County :	= Medina
County S	ummary of Projected Water Needs (Shortages)	and Water Mar	nagement	Strategies					up(s) = all
Projected	Water Needs (acft/yr)								
· rojecteu	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
 	Municipal		2,015	2,110	2,208	2,427	2,582	2,750	110100
	Industrial		2,0,0	2,110	0		2,002	2,750	
	Steam-Electric		0	Ō	Ō	0	Ō	0	
	Mining		68	68	70	72	74	76	
	Irrigation		98,916	65,268	91,320	92,320	88,925	84,692	
	Total Needs		100,999	67,446	93,596	94,819	91,581	87,518	
L	Mun, Ind, S-E, & Min Needs		2,083	2,178	2,276	2,499	2,656	2,826	
	Irrigation Needs		98,916	65,268	91,320	92,320	88,925	84,692	
Water Ma	nagement Strategies (acft/yr)	Candidate				.			
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		200	205	211	73	76	78	1
L-15	Edwards Imgation Transfers	81,000	3,000	3,000	3,000	3,000	3,000	3,000	2, 3
ļ									
		· · · · · · · · · · · · · · · · · · ·				·····			
					·				
SCTN-4	Brush Management								4
SCTN-5	Weather Modification								4
SCTN-9	Rainwater Harvesting			<u> </u> .					4
1. 40 (10.)	Small Aquiler Recharge Dams		44 003	44 003	44 003		44 003	44 007	4
L-10 (lm.)	Demand Reduction (Conservation)	-	11,887	11,867	11,867	11,887	11,887	11,867	5
	Total New Supplies		15,067	15,072	15,078	14,940	14,943	14,945	
	Total System Mgmt. Supply / Deficit		-85,932	-52,374	-78,518	-79,879	-76,638	-72,573	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		1,117	1,027	935	574	420	252	
	Irrigation System Mgmt. Supply / Deficit		-87,049	-53,401	-79,453	-80,453	-77,058	-72,825	
D1-4									
Notes:	Candidate New Supplies shown for year 2000 are identified for	r ododki implomanti	tion but udil s	ot he evallable	Immediatabi				
1	Demand Reduction (Conservation) strategies assumed largely				minieulatery.				
2	Candidate New Supply to be shared among Uvalde, Medina, A				he reliable in d	lrought	-		
3	Pursuant to draft EAA Critical Period Management rules, Cand								
	the estimated maximum potential annual transfer (95,430 acft)	based on Proposed	Permits prore	ated to 400,00	0 acft/yr.				
4	Option expected to provide additional water supply in many ye								
5	Estimates based upon use of LEPA systems on 80 percent of				40 percent of I	rrigation		l	
L	application rate, but applicable to only 50 percent of Edwards A	Aquiter imigation per	mitted quantiti	185.					

Planning Unit Alternative Regional Water Plan Uvalde County

Planning Unit Regional Water Management Alternative Plan

South Ce	entral Texas Region ummary of Projected Water Needs (Shortages	and Motor M		h Ctrotogio				County:	= Uvalde
County St	ummary of Projected water Needs (Shortages)	and water wa	anagemen	t Strategie	8			User Grou	ip(8) = aii
Projected	Water Needs (acft/yr)								
	User Group(s)	·	2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,682	3,166	3,493	4,241	4,880	5,609	
	Industrial			0	0	Ö	0	0	-
	Steam-Electric		Ō	O	O	Ö	Ö	Ō	
	Mining		0	0	0	Ō	0	O	
	Irrigation		75,263	72,798	70,154	71,022	68,880	65,676	
	Total Needs		77,945	75,964	73,647	75,263	73,760	71,285	
	Mun, Ind, S-E, & Min Needs		2,682	3,166	3,493	4,241	4,880	5,609	
	Irrigation Needs		75,263	72,798	70,154	71,022	68,880	65,676	
Water Mai	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		318	346	371	235	258	283	10000
L-15	Edwards Irrigation Transfers	81,000	3.000	4,000	4,000	5,000	5,000	6,000	2, 3,
SCTN-4 SCTN-5	Brush Management Weather Modification						-		
SCTN-9	Rainwater Harvesting			•••					
00111-0	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)		14,143	14,143	14,143	14,143	14,143	14,143	
	Total New Supplies		17,461	18,489	18,514	19,378		20,426	
	Total System Mgmt. Supply / Deficit		-60,484	-57,475	-55,133	-55,885	-54,359	-50,859	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		636	1,180	878	994	378	674	
	Irrigation System Mgmt. Supply / Deficit		-61,120	-58,655	-56,011	-56,879	-54,737	-51,533	
Notes:									
	Candidate New Supplies shown for year 2000 are identified	or priority implemen	ntation, but wil	l not be availa	ble immediate	ilv.			
1	Demand Reduction (Conservation) strategies assumed large				i i		:		
2	Candidate New Supply to be shared among Uvalde, Medina,	Atascosa, and Bex	ar Countles.	Supply may n	ot be reliable	n drought.			
3	Pursuant to draft EAA Critical Period Management rules, Car	ndidate New Supply	represents a	proximately 8	35 percent of				
	the estimated maximum potential annual transfer (95,430 ac	(I) based on Propos	ed Permils pro	oraled to 400,	000 acft/yr.				
4	Early implementation of facilities assumed in cost estimation								
5	Option expected to provide additional water supply in many y								
6	Estimates based upon use of LEPA systems on 80 percent of				at 40 percent	of irrigation			
	application rate, but applicable to only 50 percent of Edwards	Aquifer Irrigation p	ermitted quan	tities.	l	J	l	l	

Planning Unit Alternative Regional Water Plan Wilson County

Planning Unit Regional Water Management Alternative Plan

South Ce	entral Texas Region		i i					County	= Wilsor
	ummary of Projected Water Needs (Shortages) a	nd Water Man	agement St	rategies				User Gro	
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		Ō	0	0	0	63	145	
	Industrial		0	0	Ō	0	0	o	
	Steam-Electric		0	0	0	0	0	Ō	
	Mining		0	0	0	0	0	0	
	Irrigation		0	0	0	0	0	0	
	Total Needs		0	0	0	0	63	145	
	Mun, Ind, S-E, & Min Needs		0	0	0	0	63	145	
	Irrigation Needs		0	0	0	0	. 0	0	
Water Mar	no noment Charter les (action)	Condidate			-				
	nagement Strategies (acft/yr)	Candidate	2000	2010		2030			Nadaa
ID#	Description	New Supply			2020		2040	2050	Notes
L-10 (Mun.) SCTN-2a	Demand Reduction (Conservation) Carrizo Aquifer - Local Supply		171	183	194	114	122 200	130 200	
	Oanizo Agailet - Eccal Guppiy						200	200	
SCTN-4	Brush Management								
SCTN-5	Weather Modification								,
SCTN-9	Rainwater Harvesting Small Aquifer Recharge Dams								·····
L-10 (lrr.)	Demand Reduction (Conservation)		 						
L-10 (III.)	Total New Supplies		171	183	194	114	322	330	
	Total How Cap blica		11		10-4	114			
	Total System Mgmt. Supply / Deficit		171	183	194	114	259	185	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		171	183	194	114	259	185	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	
Notes:		liberary in the con-							
1	Demand Reduction (Conservation) strategies assumed largely of Additional well(s) for Floresville.	enected in projecte	water demand	18.					

Planning Unit Alternative Regional Water Plan Hays County

Planning Unit Alternative Regional Water Plan Kendall County

Planning Unit Alternative Regional Water Plan Uvalde County

Planning Unit Alternative Regional Water Plan Wilson County

Planning Unit Alternative Regional Water Plan-Zavala County

Planning Unit Alternative Regional Water Plan-Zavala County

Planning Unit Alternative Regional Water Plan

South Ce	entral Texas Region							County	= Zavala
County Su	ummary of Projected Water Needs (Shortages) a	nd Water Mana	agement St	rategies				User Gro	up(s) = al
Ductoolod	Mistage No. do (mostly)			-			_		
Projected	Water Needs (acft/yr)			2010					
	User Group(s)		2000		2020	2030	2040	2050	Notes
	Municipal		0	<u> </u>		0	0	0	
	Industrial		0		0		0	0	
	Steam-Electric		0	0	- 0	0	0	0	
	Mining		80,722	70 500	70 666	90,000	0 0 0 0	0	
	Irrigation			76,589	72,655	88,293	84,673	81,200	
	Total Needs		80,722	76,589	72,655	88,293	84,673	81,200	
	Mun, Ind, S-E, & Min Needs		0	- 0	0	0	0	0	
	Irrigation Needs		80,722	76,589	72,655	88,293	84,673	81,200	
Water Mar	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		190	193	194	90	103	104	•
			L						
			.						
20714	2 (1)		 						
SCTN-4 SCTN-5	Brush Management Weather Modification		<u> </u>		·				
SCTN-9	Rainwater Harvesting		 						
2014-a	Small Aquifer Recharge Dams		 			-			
L-10 (lm.)	Demand Reduction (Conservation)		6,401	6,401	6,401	6,401	6,401	6,401	
-	Total New Supplies		6,591	6,594	6,595	6,491	6,504	6,505	
	Total New Supplies		0,551	0,004)	0,000	0,401	0,304	0,303	
	Total System Mgmt. Supply / Deficit		-74,131	-69,995	-66,060	-81,802	-78,169	-74,695	<u></u>
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		190	193	194	90	103	104	
	Irrigation System Mgmt. Supply / Deficit		-74,321	-70,188	-66,254	-81,892	-78,272	-74,799	
								فتنونس	
Notes:		-A							
1	Demand Reduction (Conservation) strategies assumed largely r				-41				
2	Option expected to provide additional water supply in many year								
3	Estimates based upon use of LEPA systems on 50 percent of a	creages imgated in	1997, WILL COU	ervation at 20	parcent of imp	jauon applicati	on rate.		

Planning Unit Alternative Regional Water Plan Simulated Comal Springs Discharge

Planning Unit Alternative Regional Water Plan Simulated San Marcos Springs Discharge

Planning Unit Alternative Regional Water Plan Simulated Edwards Aquifer Pumpage

Planning Unit Alternative Regional Water Plan Simulated Edwards Aquifer Levels

Planning Unit Alternative Regional Water Plan Additional Carrizo Groundwater Pumpage

Note: Drawdown is referenced to simulated 1994 aquifer levels and includes both projected local demands and development of water supply options in this alternative regional water plan.

Monitoring Well Location

Planning Unit Alternative Regional Water Plan Simulated Carrizo Aquifer Drawdown

Planning Unit Alternative Regional Water Plan - Carrizo Aquifer

Planning Unit Alternative Regional Water Plan - Carrizo Aquifer

Planning Unit Alternative Regional Water Plan - Carrizo Aquifer

Planning Unit Alternative Regional Water Plan - Carrizo Aquifer

Planning Unit Alternative Regional Water Plan — Carrizo Aquifer

Planning Unit Alternative Regional Water Plan Streamflow Comparisons

Planning Unit Alternative Regional Water Plan Streamflow Comparisons

Planning Unit Alternative Regional Water Plan Streamflow Frequency Comparisons

"Environmental/Conservation" Alternative Regional Water Plan

South Central Texas Regional Water Planning Group

San Antonio River Authority

HDR Engineering, Inc. January 2001

South Central Texas Region Alternative Water Plans

Alternative Name: Environmental/Conservation

Alternative ID: E/C

Alternative Description: The Environmental/Conservation Alternative Regional Water Plan is predicated on the development of water supply options having the least expected environmental impacts and on the implementation of advanced conservation measures as assumed in the water demand projections adopted for the South Central Texas Region. Potential environmental impacts of various water supply options were assessed in a qualitative manner through consideration of endangered species, unique stream segments, bays & estuaries, instream flows, riparian forests, cultural resources, size/habitat, water quality, and sustainability. Efficiency, as reflected in unit cost, is considered as a secondary criterion for selection of water supply options for inclusion in this alternative regional water plan.

The following water supply options are included in the Environmental/Conservation Alternative Regional Water Plan (in no particular order):

- 1. Demand Reduction / Conservation (L-10)
- 2. Edwards Irrigation Transfers (L-15)
- 3. Medina Lake Recharge Enhancement (S-13B)
- 4. SAWS Recycled Water Program
- 5. Colorado R. @ Bastrop LCRA Stored Water (C-13C)
- 6. Carrizo Aquifer Wilson & Gonzales Counties (CZ-10C)
- 7. Lower Guadalupe River Diversions (SCTN-16a)
- 8. Edwards Recharge Type 2 Projects (L-18c)
- 9. Edwards Recharge Guadalupe R. Diversions (SCTN-6a)
- 10. Simsboro Aquifer (SCTN-3c)
- 11. Canyon Reservoir (G-15C)
- 12. Carrizo Aquifer Local Supply (SCTN-2a)
- 13. Wimberley & Woodcreek Canyon (G-24)
- 14. Regional Aquifer Storage & Recovery (SCTN-1a)
- 15. Weather Modification (SCTN-5)
- 16. Rainwater Harvesting (SCTN-9)
- 17. Brush Management (SCTN-4)

This Page Intentionally Blank

Environmental/Conservation Alternative Regional Water Plan Summary of Key Information for South Central Texas Regional Water Planning Group

Quantity, Reliability, and Cost

- Plan includes management supplies to meet projected needs, ensure reliability, and maintain springflow, resulting in a quantity of additional water supplies sufficient to meet projected needs for municipal, industrial, steam-electric power, and mining uses through the year 2050.
- Cost is below the average for the five alternative plans and the Regional Water Plan.

Environmental Factors

- Greatest increase in median annual streamflow in the San Antonio River and least decrease in median annual freshwater inflow to the Guadalupe Estuary among the five alternative plans and the Regional Water Plan.
- Below average concerns in all resource categories among the five alternative plans and the Regional Water Plan.

Impacts on Water Resources

- No unmitigated reductions in water available to existing water rights.
- Long-term reductions in water levels in the Carrizo Aquifer. Drawdown would be less than the average for the five alternative plans under consideration.

Impacts on Agriculture and Natural Resources

- Major commitment to municipal and irrigation water Demand Reduction (Conservation) (L-10).
- Includes Brush Management (SCTN-4) and Weather Modification (SCTN-5).
- Inclusion of water supply options to meet projected irrigation needs in full is estimated to be economically infeasible at this time. Weather Modification (SCTN-5) assists irrigation and dry-land agriculture (crops and ranching).
- Includes maximum potential voluntary transfer of Edwards Aquifer irrigation permits to municipal permits through lease or purchase.
- Includes Medina Lake Recharge Enhancement (S-13B) which reduces or eliminates water supplies from the Medina Lake System for irrigation in Bexar, Medina, and Atascosa Counties.

Other Relevant Factors per SCTRWPG

Comparison of Strategies to Meet Needs

 Selection of water supply options comprising the alternative plan based on implementation of advanced conservation measures and minimization of environmental impacts.

Interbasin Transfer Issues

- Projected non-irrigation needs in basin(s) of origin are met throughout the planning period.
- Plan includes two interbasin transfers: 1) Edwards Recharge Guadalupe River Diversions (SCTN-6a) from the Guadalupe River near Lake Dunlap to the outcrop of the Edwards Aquifer in the San Antonio River Basin; and 2) LCRA Stored Water (C-13C) from the Colorado River at Bastrop to Bexar County.
- Plan includes one potential interbasin transfer from the Saltwater Barrier at the confluence of the Guadalupe and San Antonio Rivers (SCTN-16a) to Bexar County.

Third-Party Impacts of Voluntary Redistribution of Water

- Potential positive or negative effects of Edwards Irrigation Transfers (L-15).
- Lower water levels in some portions of the Carrizo Aquifer.

Regional Efficiency

- Edwards Irrigation Transfers (L-15) require no new facilities. Transferred water would likely be available at or very near locations having projected municipal, industrial, steam-electric power, and mining needs in Uvalde, Medina, Atascosa, and Bexar Counties.
- Terminal storage and regional water treatment facilities in Bexar County increase efficiency, improve reliability, and reduce unit cost.
- San Antonio Water System Regional Aquifer Storage & Recovery System (SCTN-1a) substantially reduces peak summer pumpage from the Edwards Aquifer.
- Edwards Recharge Guadalupe River Diversions (SCTN-6a) provides for recovery and recirculation of enhanced Comal springflow resulting from implementation of Edwards Recharge Type 2 Projects (L-18c).

Effect on Navigation

• Not applicable.

South Central Texas Region, Environmental/Conservaion Alternative – TWDB Evaluation Criteria Summary

Management Strategy	Quantity (acft/yr)	Reliability ²	Cost (\$/acft) 3	$\overline{}$	F	_	Impacts on Water Resources	1	mpacts on Agricultural and Natural Resources	1	Other Relevant Factors per SCTRWPG
Municipal Demand Reduction (Conservation)	44,566	Firm	\$173	+-	Environmental Factors	⊢		 		1_	Conservation is a central element of the Plan
(L-10 Mun.) Edwards Irrigation Transfers (L-15)			3173		None. Supply developed through deman reduction.	•	Slight reductions in treated effluent discharge		Fewer water management strategies necessary to meet projected needs	Ľ	
<u> </u>	81,000	Firm	. \$80	•	None. Supply developed without new falities.	•	Reductions in springflow due to relocation of pumpage closer to springs.	•	Plan includes 100 percent of potential of max. voluntary transfer through lease or purchase.	•	Encourages beneficial use of available rights.
Edwards Recharge - Type 2 Projects (L-18c)	13,451	Firm,	\$486	•	Concerns with endangered & threatened species, habitat, and TPWD Ecologically Unique Stream Segments at some sites. Enhanced springflows help endangered secies.	•	Limited, as most projects are located on streams that are frequently dry. Increased aquifer levels and springflows.	•	Typically higher well levels in Uvalde & Medina Counties.	•	Positive effects on discharges from Comal and San Marcos Springs. Mitigation of impacts on firm yield of Choke Canyon Res. / Lake Corpus Christi System.
Canyon Reservoir - River Diversion (G-15C)	15,000	Firm	\$794	•	Minimal. Canyon Reservoir is an existin resource.	•	Increased instream flows associated with downstream deliveries of water supply.	•	Not applicable.	:	Encourages beneficial use of existing reservoir. Recreational benefits with downstream delivery.
Canyon Reservoir - Wimberley & Woodcreek (G-24)	1,048	Firm	\$1,586	1	Minimal. Pipeline could encounter endatered or threatened species habitat.	•	Minimal, if any.	٠	Not applicable.	•	Encourages beneficial use of existing reservoir.
Lower Guadalupe River Diversion (SCTN-16a)	56,276	Firm	\$856	•	Concerns with endangered & threatened species, habitat, cultural resources, and TWD Ecologically Unique Stream Segment.	•	Some reductions in freshwater inflows to the Gundalupe Estuary associated with greater utilization of existing water rights.	•	Minimal, if any.	:	Encourages beneficial use of available rights. Protects instream flows and recreational opportunities through lower basin diversion.
Carrizo Aquifer – Wilson & Gonzales (CZ-10C) ⁵	75,000	Firm	\$764	•	Minimal. Pipeline could encounter cultural resource sites.	:	Long-term reductions in well levels. Some reductions in instream flow at outcrop. Potential effects on discharge of small springs.	•	Minimal, if any.	•	Planned withdrawals in excess of that expressed in policies of underground water conservation districts.
Carrizo Aquifer - Local Supply (SCTN-2a)	14,700	Firm	\$386	•	Minimal, if any	-	Modest long-term reductions in aquifer levels.	١.	Minimal, if any,	1	
Simsboro Aquifer (SCTN-3c)	55,000	Firm	\$927	•	Concerns with endangered & threatened species, habitat, and cultural resources.	:	Long-term reductions in aquifer levels. Minimal reductions in instream flow at outcrop. Potential effects on discharge of small springs.	•	Minimal, if any.	•	Beneficial use of groundwater now unused. Planned Bastrop Co. supply for Region L exceeds 2030 availability per Region K.
SAWS Recycled Water Program (SAWS)	52,215	Firm	\$395	•	None. Water supply derived from increasd volumes of treated wastewater.	•		1-	Not applicable.	•	Encourages beneficial use of available resource.
Purchase of Water From Major Provider (PMP)	8,000	Firm	\$877	•	Minimal, if any. Supply developed as par of other water management strategies.	•	Minimal, if any.	<u>├</u>	Not applicable.		
LCRA Stored Water - Colorado Riv @ Bastrop (C-13C)	50,000	Firm	\$854	•	Concerns with endangered & threatened species, habitat, cultural resources, and TIWD Ecologically Unique Stream Segments.	•	Reductions in freshwater inflows to Matagorda Bay associated with greater utilization of existing water rights.	•	Minimal.	•	Encourages beneficial use of existing reservoir.
Medina Lake Recharge Enhancement (S-13B)	8,136	Firm	\$159	•	Concerns with endangered & threatened species.	•	Increased lake levels, aquifer levels, and springflows.	1.	Potentially eliminates irrigation from the BMA Canal System.	•	Owner of the Medina Lake System opposed to inclusion of this strategy in the Plan.
Edwards Recharge - Guadalupe Riv Diversions (SCTN- 6a)	42,121	Firm	\$534	•	Concerns with endangered & threatened species, habitat, and cultural resources.	•	Increased springflow and reduced streamflow below Lake Dunlan.	•	Not applicable.	1.	Downstream interests keenly opposed to this management strategy.
Aquifer Storage & Recovery (ASR) - (SCTN-1a)	Unquantified ·	Firm	Unquantified	•	Minimal. Pipeline could encounter imporant habitat or encounter cultural resource site	•	Reduced peak summer pumpage from Edwards Aquifer increases aquifer levels and springflow.	•	Not applicable.	•	SAWS South Bexar County ASR presently in implementation phase.
Brush Management (SCTN-4)	Unquantified	Unknown	Unquantified	٠	Concerns regarding endangered & threate×d species, vegetation & wildlife habitat, and cultural resources	•	Potential benefit to Edwards Aquifer due to increased water for recharge.	•	Potential improvement of pasture for grazing.	•	Additional studies needed to determine quantity of dependable supply during drought.
Weather Modification (SCTN-5)	Unquantified	Unknown	Unquantified	•	Potential increases in water supply for willlife habitat.	•	Potential increases in rainfall, runoff, and aquifer recharge.	•	Provides water for irrigated and dry-land agriculture (crops & ranching).	•	Concerns regarding increased flood potential.
Small Aquifer Recharge Dams	Unquantified	Unknown	Unquantified	•	Small potential effects on habitat.	•	Potential increases in local aquifer levels.	١.	Minimal, if any.	+	
Rainwater Harvesting (SCTN-9)	Unquantified	Unknown	Unquantified		Minimal, if any.	T.	Minimal, if any.	Ť	Not applicable,	 	Consistent with conservation focus of Plan.
Total of New Supplies	516,513			<u> </u>	evenuences as duly.		· · · · · · · · · · · · · · · · · · ·		Not applicable.		Consistent with conservation focus of Plan.

Management Strategy		Comparison of Strategies to Meet Needs		Interbasin Transfer Issues		Third-Party Impacts of Voluntary Transfers		Regional Efficiency	1	Effect on Navigation
Municipal Demand Reduction (Conservation) (L-10 Mun.)	:	Low unit cost Inherent environmental benefits	•	Not applicable	Ŀ	Not applicable	•	Implementable throughout the region	•	None
Edwards Irrigation Transfers (L-15)	•	Low unit cost.	•	Not applicable.	•	Maximum transfer may have potential socio- economic impacts to third parties.	•	Requires no new facilities.	•	None
Edwards Recharge - Type 2 Projects (L-18c)	•	Low unit cost	•	Not applicable.	•	Not applicable.	•	Requires no new transmission and treatment facilities.	•	None
Canyon Reservoir - River Diversion (G-15C)	•	Moderate unit cost.	•	Not applicable.	•	Not applicable.	•	Significant additional surface water supply without construction of a new reservoir.	1.	None
Canyon Reservoir Wimberley & Woodcreek (G-24)	• .	High unit cost, but options to meet needs are limited.	•	Not applicable.	-	Not applicable.	•	Additional surface water supply without construction of a new reservoir.	•	None
Lower Guadalupe River Diversion (SCTN-16a)	•	Moderate unit cost.	•	Not applicable with diversion facilities located in San Antonio River Basin.	•	Not applicable.	•	Shared pipeline alignment with other strategies. Shared water treatment and balancing storage facilities in Bexar County.	•	None
Carrizo Aquifer Wilson & Gonzales (CZ-10C) ³	•_	Moderate unit cost.	•	Not applicable.	•	Transfer rate could have potential socio- economic impacts to third parties.	•	New supply proximate to Bexar County.	•	None
Carrizo Aquifer - Local Supply (SCTN-2a)	•	Low unit cost.	•	Not applicable.	•	Not applicable.	•	New supply proximate to points of need.	•	None
Simsboro Aquifer (SCTN-3c)	•	Moderate unit cost.	•	Not applicable.		Limited transfer to avoid potential socio- economic impacts to third parties.	•	Beneficial use of groundwater presently produced, but unused. Phased sharing of resource between Bexar, Comal, & Hays Counties.	•	None
SAWS Recycled Water Program (SAWS)	•	Low to moderate unit cost.	•	Not applicable.	•	Not applicable.	•	New supply proximate to points of need.	•	None
Purchase of Water From Major Provider (PMP)	<u> </u>	Low to moderate unit cost.	•	Not applicable.	<u>] •</u>	Not applicable.	\perp		1.	None
LCRA Stored Water - Colorado Riv @ Bastrop (C- 13C)	•	Moderate unit cost.	•	TNRCC Interbasin Transfer permit required.	•	Not applicable.	•	Shared pipeline alignment with other strategies. Shared water treatment and balancing storage facilities in Bexar County.	•	None
Medina Lake Recharge Enhancement (S-13B)	•	Low unit cost.	•	Not applicable.] <u> </u>	Potentially significant impacts due to reduced irrigation from the BMA Canal System.	•	Requires no new facilities.	•	None
Edwards Recharge Guadalupe Riv Diversions (SCTN-6a)	•	Low to moderate unit cost.	•	TNRCC Interbasin Transfer permit required	•	Not applicable.	•	Provides for recovery and recirculation of enhanced springflow from Edwards Recharge - Type 2 Projects (L-18c).	•	None
Aquifer Storage & Recovery (ASR) - (SCTN-1a)	_	Effective means of reducing peak summer pumpage from the Edwards Aquifer.	•	Not applicable.	•	Not applicable.	•	Increases reliability of current supply from the Edwards Aquifer.	•	None
Brush Management (SCTN-4)	•	Insufficient information at this time.	•	Not applicable.	<u> </u>	Not applicable.	•	May contribute positively to storage and system management of supplies.	•	None
Weather Modification (SCTN-5)	•	Potentially feasible management strategy to meet a portion of projected irrigation needs.	•	Not applicable.	<u> </u>	Not applicable.	•	May contribute positively to storage and system management of supplies.	•	None
Small Aquifer Recharge Dams	•	High unit cost.	•	Not applicable.	<u> •</u>	Not applicable.	•	Implementable throughout the region.		None
Rainwater Harvesting (SCTN-9)	•	High unit cost; comparable to domestic well.	•	Not applicable.	•	Not applicable.	1.	Implementable throughout the region.	1.	None

Notes:

1) Quantity based on full implementation and utilization of new supplies in year 2050.

2) Firm reliability indicates that new supply is dependable in a drought of record with full implementation of the Alternative Plan.

3) Unit cost based on full utilization of supply at ultimate capacity of planned facilities and includes treatment and distribution facilities necessary to meet peak daily needs.

4) Management strategies in the implementation phase include Schertz-Seguin Water Supply Project, Western Canyon Regional Water Supply Project, Hays/IH35 Water Supply Project, Lake Dunlap WTP Expansion and Mid-Cities Project, and GBRA Canyon Reservoir Contract Renewals. Supplies associated with these management strategies were counted as current supply in the technical evaluation of alternative regional water plans.

5) Subsequent to the technical evaluation of alternative regional water plans, quantity associated with this management strategy was limited in the Regional Water Plan in viev of policies of underground water conservation districts.

Environmental/Conservation Alternative Regional Water Plan Unit Cost of Cumulative Additional Water Supply

Environmental/Conservation Alternative Regional Water Plan Annual Cost of Cumulative Additional Water Supply

Environmental/Conservation Alternative Regional Water Plan Cumulative Additional Water Supply

Environmental/Conservation Alternative Regional Water Plan Atascosa County

	entral Texas Region						Co	unty = A	tascosa
County S	iummary of Projected Water Needs (Shorta	ges) and Wa	ter Manag	ement St	rategles		U	ser Grou	p(s) = al
Projecter	d Water Needs (acft/yr)	•							
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
· · · · ·	Municipal		325	366	401	468	530	587	140162
	Industrial		323	<u>300</u>	401	0	330	0	
	Steam-Electric		ŏ				1,504	8,504	
	Mining		<u> </u>		- 6	995	1,109	1,239	
	Imagalion		38,418	36,718	35,170	43,726	42,190	40,713	
	Total Needs		38,743		35,571	45,189			
				37,084			45,333	51,043	
	Mun, Ind, S-E, & Min Needs		325	366	401	1,463	3,143	10,330	
	irrigation Needs		38,418	36,718	35,170	43,726	42,190	40,713	
Water Ma	nagement Strategies (acft/yr)	Candidate	·						-
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		356	384	411	259	300	319	
L-15	Edwards Irrigation Transfers	81,000	500	500	500	500	700	700	2, 3,
SCTN-2a	Carrizo Aquifer - Local Supply					1.000	3,000	10,000	5,
									·
SCTN-4	Brush Management								
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
	Small Aquifer Recharge Dams								
L-10 (Irr.)	Demand Reduction (Conservation)		3,692	3,692	3,692	3,692	3,692	3,692	
	Total New Supplies		4,548	4,576	4,603	5,451	7,692	14,711	
	Total System Mgmt. Supply / Deficit	•	24 405	22 500	20.000	20 720	27 644	20 222	
			-34,195	-32,508	-30,968	-39,738	-37,641	-36,332	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		531	518	510	296	857	689	
	irrigation System Mgmt. Supply / Deficit		-34,726	-33,026	-31,478	-40,034	-38,498	-37,021	
Notes:			1						
•	Candidate New Supplies shown for year 2000 are identif	lied for priority imp	dementation.	but will not b	e available i	nmedialely.	<u> </u>		
1	Demand Reduction (Conservation) strategies assumed I						··	<u>†</u>	
2	Candidate New Supply to be shared among Uvalde, Med	dina, Atascosa, ar	nd Bexar Cou	nties. Suppl	y may not be	reliable in d	rought.		
3	Pursuant to draft EAA Critical Period Management rules,	Candidate New S	Supply repres	ents approxi	mately 85 pa	rcent of			
	the estimated maximum potential annual transfer (95,43)	0 acfi) based on F	roposed Pen	mits prorated	to 400,000 a	cft/yr.			
4	Additional Edwards supply is for City of Lytle.								
5	Additional Carrizo supply is for Steam-Electric and Minin	g use.							
6	Early implementation of facilities assumed in cost estima	tion to ensure suf							
7	Option expected to provide additional water supply in ma	any years, but dep	endable sup	ply during dro	ought is pres	ently unquan	lified.		
3	Estimates based upon use of LEPA systems on 50 percentages	ent of acreages in	igated in 199	7, with conse	ervation at 20	percent of it	rigation appli	cation rate.	

Environmental/Conservation Alternative Regional Water Plan Bexar County

Cauth Canta	of Towar Barlon	3.0							
	al Texas Region mary of Projected Water Needs (Shortages) and \	Matas Managar	and Charles	-1					ty = Bexa
		vater managen	ient attate	105				User Gro	oup(s) = al
Projected W	ater Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		122,867	154,495	196,301	262,070	315,633	353,309	
	Industrial		Q	0	0	1,430	4,759	8,192	
	Steam-Electric		0	0	0	0	0	0	
	Mining		4,983	4,938	5,201	5,408	5,645	5,982	
	Irrigation		22,575	20,374	19,585	19,015	18,385	17,368	
	Total Needs		150,405	179,805	221,087	287,921	344,422	384,831	
	Mun, Ind, S-E, & Min Needs		127,830	159,431	201,502	268,906	326,037	367,463	
	Irrigation Needs		22,575	20,374	19,585	19,015	18,385	17,368	
Water Manag	gement Strategies (acft/yr)	Candidate			-				
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
	Demand Reduction (Conservation)		33,528	42,509	41,210	36,533	38,834	40.934	
L-15	Edwards Irrigation Transfers	81,000	50,000	55,000	60,000	65,000	70,000	71,300	2,
SCTN-3c	Simsboro Aquifer	55,000	51,000	48,000	41,000	27,000	18,500	11,500	
CZ-10C	Carrizo Aquifer - Wilson & Gonzales	75,000	19,000	19,000	29,000	49,000	64,000	70,500	
L-18c	Edwards Recharge - Type 2 Projects	13,451	13,451	13,451	13,451	13,451	13,451	13,451	
SCTN-16a	Lower Guadalupe River Diversions	46,813	13,431	46,813	46.813	46,813	46,813	46.813	
00111-100	SAWS Recycled Water Program	40,010		19,826	26,737	35.824	43,561	52,215	6.
SCTN-6a	Edwards Recharge - Guad. R. Diversions	42,121		10,020	42,121	42,121	42,121	42.121	<u></u>
S-13B	Medina Lake - Recharge Enhancement	8,136			8,138	8.136	8,136	8.138	
C-13C	Colorado R. @ Bastrop - LCRA Stored	50,000			0,100	0,150	50,000	50,000	
SCTN-1a	Aquifer Storage & Recovery - Regional						00,000		-
SCTN-4	Brush Management								1
SCTN-5	Weather Modification								1
SCTN-9	Rainwater Harvesting								<u> </u>
1==	Small Aquifer Recharge Dams								i
L-10 (Irr.)	Demand Reduction (Conservation)		4,521	4,521	4,521	4,521	4,521	4,521	1
2 10 (0.1.7	Total New Supplies		171,500			328,399	397.937	399,991	
. —	Total System Mgmt. Supply / Deficit		21,095	69,315	91,902	40,478	53,515	15,160	
ļ	Mun, Ind, S-E, & Min System Mgmt. S		39,149	85,168	106,966	54,972	67,379	28,007	
	Irrigation System Mgmt. Supply / Deficit		-18,054	-15,853	-15,064	-14,494	-13,864	-12,847	
Notes:	O-didde No. Configuration (10 - 1 1	4-41		-D-bt- 1-			
	Candidate New Supplies shown for year 2000 are id					vallable imm	rediately.		
1	Demand Reduction (Conservation) strategies assum	Modice Africa	rea in proje	cted water o	emanos.		lable to de-		
2	Candidate New Supply to be shared among Uvalde, Pursuant to draft EAA Critical Period Management n estimated maximum potential annual transfer (95,43	Medina, Atasco	Sa, and Be)	ET COUNTIES	Supply M	By not be re	nable in droi	Antr	<u> </u>
3	estimated maximum potential annual transfer (95.43	D acfi) based on	Proposed	Permils oron	ated to 400.	000 active.	in or use		
4	Candidate New Supply to be shared among Bexar, (Comal, and Hav	s Counties.	Effects on r	egional agu	ifer levels to	be quantific	ad.	
5	Candidate New Supply to be shared among Bexar a								
6	Current SAWS Recycled Water Program is included						1		
7	Future use of recycled water for non-potable uses as						er demand		
8	Supply dependent upon future water needs in Regio					-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>		
9	SAWS ASR program in southern Bexar County Incre	ases reliability	of Edwards	Aquifer supr	ly and redu	ces season	al aquifer de	mands.	·
10	Option expected to provide additional water supply in	n many years, h	ut dependet	ie supply di	ulna drough	t is present	v unquantifi	ed.	
111	Oplion expected to provide additional water supply in Estimates based upon use of LEPA systems on 80 papplication rate, but applicable to only 50 percent of	ercent of acrea	jes irrigated	In 1997, wi	h conserva	lion at 40 pe	rcent of imig	alion	
	application rate, but applicable to only 50 percent of	Edwards Aquife	r irrigation p	ermitted qua	ntilles	·			

Environmental/Conservation Alternative Regional Water Plan Caldwell County

South C	entral Texas Region		<u> </u>				C	ounty =	Caldwell
County S	Summary of Projected Water Needs (Shortag	es) and Wate	r Manage	ment Strat	legies			User Grou	ıp(s) = all
Projecter	d Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0		393	668	714	737	
	Industrial		 			0	0	0	
	Steam-Electric		ŏ		Ö	Ō	Ō	Ŏ	
	Mining		0	0	0	0	0	0	
	Irrigation		0	0	0	0	0	0	
	Total Needs		0	188	393	668	714	737	
	Mun, Ind, S-E, & Min Needs		0		393	668	714	737	
	Irrigation Needs		0	0	Ō	0	0	0	
101-4	Objects of a filter	Operalistate							
water ma	anagement Strategies (acft/yr)	Candidate		ļ <u></u>					ļ
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		195		218	82	93		1
SCTN-2a	Carrizo Aquifer - Local Supply			500	500	1,000	1,000	1,000	2
	Small Aquifer Recharge Dams		ļ						3
L-10 (lrr.)	Demand Reduction (Conservation)								
	Total New Supplies		195	708	718	1,082	1,093	1,104	-
	Total System Mgmt. Supply / Deficit		195	518	325	414	379	367	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		195		325	414	379	367	•
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	
Notes:									
1	Demand Reduction (Conservation) strategies assur	med largely sells	octod in cost	locted water	demands	<u>-</u>			
2	Additional well(s) for Lockhart.	HOO HOLDERY FORE	scied iii bio	arian Malai	Gennanda.				
3		<u> </u>		l andahir s					
<u> </u>	Option expected to provide additional water s	uppiy in many ye	ears, Dui de	havogoie 2i	pppy gunng	orought IS	presenuy ur	iquantined.	<u> </u>

Environmental/Conservation Alternative Regional Water Plan Comal County

South Co	entral Texas Region							County	= Comal
County S	ummary of Projected Water Needs (Shortag	es) and Water	r Manager	nent Strat	egies			User Grou	p(s) = all
Projected	l Water Needs (acft/yr)								
i rojected	User Group(s)	*******	2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,289		10.487	18,282	25,205	33,062	110168
	Industrial		1,388	1,425	1,486	1,737	2,009	2.289	
	Steam-Electric		1,300	1,420	1,400	1,737	<u> </u>	<u>2,208</u>	
	Mining		5,570	<u></u>	5.628	5.796	3,590	2,224	
 	Irrigation		30		<u> </u>	0,750		2,227	
-	Total Needs				17,601	25,815	30,804		
			9,277						
<u> </u>	Mun, Ind, S-E, & Min Needs		9,247	11,938	17,601	25,815	30,804	37,575	
)	Irrigation Needs		30	14	0	0	0	0	
Water Ma	nagement Strategies (acft/yr)	Candidate			•				
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)	11011 Cuppiy	616		848	718	824	942	110100
G-15C	Canyon Reservoir - River Diversion	15,000	15,000		15,000	15,000	15,000		
SCTN-3c	Simsboro Aquifer	55,000	10,000	10,000	3,500	12,000	16,500		3, 4
	Small Aquiler Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)								
·									
	Total New Supplies		15,616	15,718	19,348	27,718	32,324	39,942	
	Total System Mgmt. Supply / Deficit		6,339	3,766	1,747	1,903	1,520	2,367	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		6,369		1,747	1,903	1,520		
	Irrigation System Mgmt. Supply / Deficit		-30	-14	0	0	0	. 0	
Notes:		<u> </u>	L	ا ــــــــــــــــــــــــــــــــــــ				_ <u>.</u>	
ļ <u> </u>	Candidate New Supplies shown for year 2000 are identified				vailable imme	diately.			
1	Demand Reduction (Conservation) strategies assumed lar		ojected wate	r demands.					
<u> 2</u>	Portion of Canyon firm yield (with amendment) diverted be	low Seguin.		ll	 !				
3	Candidate New Supply to be shared among Bexar, Comal	and Hays Countie	s. Effects of	n regional aqu	iter levels to	<u>be quantitied.</u>			
4	Early implementation of facilities assumed in cost estimation				17			ļ	
5	Option expected to provide additional water supply in man	y years, but depen	danie supply	anuut atonti	<u>ıı ıs presenliy</u>	unquantitied	•		

Environmental/Conservation Alternative Regional Water Plan Dimmit County

South C	entral Texas Region							County =	Dimmi
County S	Summary of Projected Water Needs (Shortage	es) and Water	Managen	nent Strate	gies	j		Jser Grou	
Projector	d Water Needs (acft/yr)					1	1		
FIDJectet	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		138	405	649	1,054	1,479	1,959	140162
	Industrial		130	- 403	0 0	1,034	1,478	1,959	
	Steam-Electric	····	 	ŏ	ŏ	ő	0	ŏ	· · · · · · · · · · · · · · · · · · · ·
	Mining		ŏ l	ő		915	925	949	
	Irrigation		ől	Ö	Ö	2,133	1,737	1,331	
	Total Needs		138	405	649	4,102	4,141	4,239	
	Mun, Ind, S-E, & Min Needs		138	405	649	1,969	2,404	2,908	
	Irrigation Needs		130	- 405	0	2,133	1,737	1,331	
	inigation reeds		U	U	U U	2,133	1,737	1,001	_
Water Ma	anagement Strategies (acft/yr)	Candidate				[
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		131	144	156	104	118	133	
SCTN-2a	Carrizo Aquifer - Local Supply		500	1,000	1,000	2,500	3,000	3,500	2,
SCTN-4	Brush Management								
SCTN-5	Weather Modification			i					
SCTN-9	Rainwater Harvesting							_	
	Small Aquifer Recharge Dams								
L-10 (lm.)	Demand Reduction (Conservation)								
	Total New Supplies		631	1,144	1,156	2,604	3,118	3,633	
	Total System Mgmt. Supply / Deficit		493	739	507	-1,498	-1,023	-606	
	. Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		493	739	507	635	714	725	-
	Irrigation System Mgmt. Supply / Deficit		0	0	0	-2,133	-1,737	-1,331	
Notes:									
•	Candidate New Supplies shown for year 2000 are Identifie	d for priority imple	mentation, but	will not be av	railable imme	diately.			
1	Demand Reduction (Conservation) strategies assumed lar	gely reflected in pr	ojected water	demands.					
2	Additional well(s) for Carrizo Springs and Mining supply.]			
3	Early implementation of facilities assumed in cost estimation					l		<u>:</u>	
4	Option expected to provide additional water supply in many	y years, but depen	dable supply	during drough	it is presently	unquantified.			

Environmental/Conservation Alternative Regional Water Plan Frio County

South Co	entral Texas Region							Coun	ty = Fric
County S	ummary of Projected Water Needs (Shortage	s) and Water	Managen	ent Strate	gies			Jser Grou	
									F (-/
Projected	Water Needs (acft/yr)	_				ſ			
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0	0	0	0	0	0	
	Industrial		ő	ő	Ö	Ö	Ö		
	Steam-Electric		O	O.	Ö		Ō	ō	
	Mining		Ō	0	0	O	0	ō	
	Irrigation		71,126	67,646	64,365	76,505	73,519	70,662	
	Total Needs		71,126	67,646	64,365	76,505	73,519	70,662	
	Mun, Ind, S-E, & Min Needs		0	0.10.10	0	0	0	<u></u>	
	Irrigation Needs		71,126	67,648	64,365	76,505	73,519	70,662	
	1111941011110040		71,120	91,040	04,000	10,000	70,010	70,002	
Water Ma	nagement Strategies (acft/yr)	Candidate							•
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)	топ оприд	184	195	205	116	121	124	
C. 10 (Islail.)	Delitario (Canada) (Canada)							——— <u>'</u>	
				f				_	
			·						
			-			i			
SCTN-4	Brush Management								
SCTN-5	Weather Modification			i i					
SCTN-9	Rainwater Harvesting					1			
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)		5,947	5,947	5,947	5,947	5,947	5,947	
	Total New Supplies		6,131	6,142	6,152	6,063	6,068	6,071	
	10001000		9,1011	U 1 1 1	Clica		- 0,000	5,57.1	
	Total System Mgmt. Supply / Deficit		-64,995	-61,504	-58,213	-70,442	-67,451	-64,591	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		184	195	205	116	121	124	
	mun, mu, 3-2, a min System ingint. Supply /		104	193	205	' ' ' '	121	124	
			CF 470	04.000	50.440	— 			
	irrigation System Mgmt. Supply / Deficit		-65,179	-61,699	-58,418	-70,558	-67,572	-64,715	
Notes:						1			
1	Demand Reduction (Conservation) strategies assumed large	ach reflected in a	rolad welst	demende					· · ·
2	Option expected to provide additional water supply in many	vears but deser	dable cunch	tudno drovoh	t la presentiv	halillanuanii			
2	Estimates based upon use of LEPA systems on 50 percent	of acreance inine	ted in 1907	ith conservat	ling at 20 per	cent of Irricati			

Environmental/Conservation Alternative Regional Water Plan Guadalupe County

South Co	entral Texas Region				j		Cou	inty = Gu	adalupe
County S	ummary of Projected Water Needs (Shortage	es) and Water	Managen	nent Strat	egies			User Grou	
Projected !	Water Needs (acft/yr)								
Fiolecten	User Group(s)	· · · · · · · · · · · · · · · · · · ·	2000	2010	2020	2030	2040	2050	Notes
	Municipal		2000	23	30	71	2040	773	HOIES
	Industrial		985	1,204	1,350	1,487	1,692	1,899	
	Steam-Electric		800	1,204	1,330	1,487	1,092	1,033	
· 	Mining		198	198	200	202	207	213	
	Irrigation	·	985	879	779	684	594	508	
	Total Needs		2,195	2,304	2,359	2,444	2,580	3,393	
	Mun, Ind, S-E, & Min Needs		1,210	1,425	1,580	1,760	1,986	2,885	
	Irrigation Needs		985	879	779	684	594	508	
	nagement Strategies (acft/yr)	Candidate .							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		235	236	236	5	. 5	6	1
CZ-10C	Carrizo Agulfer - Wilson & Gonzales	75,000	1,500	1,500	2,000	2,000	2,500	4,500	2, 3
	·								
	Small Aquifer Recharge Dams								4
L-10 (lrr.)	Demand Reduction (Conservation)								
	Total New Supplies		1,735	1,736	2,236	2,005	2,505	4,506	-
	Total System Mgmt. Supply / Deficit		-460	-568	-123	-439	-75	1,113	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		525	311	656	245	519	1,621	
	Deficit	'	323	• • • • • • • • • • • • • • • • • • • •	****		, 5.5	',-2.	
	Irrigation System Mgmt. Supply / Deficit		-985	-879	-779	-684	-594	-508	
	i millation obstem white orbbid i paneit		-505	-010	-, 10	-504	-007	-550	
Notes									
Notes:	Candidate New Supplies shown for year 2000 are identified	d for adority imple	mentation but	l will not be e	and aldelies	diately			
1	Demand Reduction (Conservation) strategies assumed large				randine intime	watery.			
2	Candidate naw supply to be shared by Bexar and Guadatu				ls to be guest	lified			
3	Early Implementation of facilities assumed in cost estimation	n in ensure suffici	eni sunniv du	ino qualer iove	o to oa dagii	u.10U.			

Environmental/Conservation Alternative Regional Water Plan Hays County

South C	entral Texas Region						_	County	/ = Hays
County S	Summary of Projected Water Needs (Shortag	es) and Water	Manager	nent Strat	egies			User Grou	
Projector	d Water Needs (acft/yr)						ì		<u>.</u>
Fiolecter	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
				7,609	10,980	16,349	22,696	29,059	Mores
	Municipal Industrial		4,325 0	7,609	10,980 0	10,349	22,090	29,039	
	Steam-Electric		 	 			<u>v</u>	0	
	Mining		84	82	68	55	37	28	
	Imigation		<u>_</u>	0	<u>-</u>	0	0	0	
	Total Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Mun, Ind, S-E, & Min Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Irrigation Needs			7,001	0	0	0	20,007	
	migation receas		U			U	U		
Water Ma	anagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		647	747	873	699	906	1,174	
SCTN-3c	Simsboro Aquifer	55,000	4,000	7,000	10,500	16,000	22,000	31,000	2, 3
G-24	Canyon Reservoir	1,048	1,048	1,048	1,048	1,048	1,048	1,048	
	Small Aguifer Recharge Dams			l					
L-10 (lrr.)	Demand Reduction (Conservation)								
	T-4-1 N O		5 605	0.705	40 404	47 747	00.054	22 222	
	Total New Supplies		5,695	8,795	12,421	17,747	23,954	33,222	
	Total System Mgmt. Supply / Deficit		1,286	1,104	1,373	1,343	1,221	4,135	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		1,286	1,104	1,373	1,343	1,221	4,135	
	Deficit		.,200	.,.04	1,5.5	1,040	','	4,100	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	·
	migation System mymt. Supply / Dentit				<u></u>	<u>VI</u>			
Notes:						_			
•	Candidate New Supplies shown for year 2000 are identified	d for priority impler	nentation, bu	will not be a	vallable imme	diately.			
1	Demand Reduction (Conservation) strategies assumed large	gely reflected in pr	ected water	demands.					
2	Candidate New Supply to be shared among Bexar, Comal,	and Hays Countie	s. Effects on	regional aqu	ifer levels to I	e quantified.			
3	Early Implementation of facilities assumed in cost estimation	n to ensure suffici	ent supply du	ring drought.					
4	Candidate New Supply for Wimberley and Woodcreek.								
5	Option expected to provide additional water supply in many	years, but depen-	dable supply	during drough	it is presently	unquantified.			

Environmental/Conservation Alternative Regional Water Plan Kendall County

South Ce	entral Texas Region							County =	Kendall
County S	ummary of Projected Water Needs (Shortage	es) and Water	Managen	nent Strate	egles			User Grou	
<u>Projected</u>	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		1,070	1,560	2,808	4,099	5,578	7,518	
	Industrial		2	3	4	4	5	6	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	0	0	0	O	0	
	Irrigation		0	0	0	0	0	0	
	Total Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Mun, Ind, S-E, & Min Needs		1,072	1,563	2,812	4,103	5,583	7,524	_
	Irrigation Needs		0	0	0	0	0	0	
Mater Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		67	71	71	11	11	11	
	Purchase Water from Major Provider		2,000	2,000	3,000	5,000	6,000	8,000	2, 3
SCTN-4	Brush Management								
SCTN-5	Weather Modification								-
SCTN-9	Reinwater Harvesting Small Aquifer Recharge Dams			}		·			
L-10 (lrr.)	Demand Reduction (Conservation)								
L-10 (III.)	Total New Supplies		2,067	2,071	3,071	5,011	6,011	8,011	
	Total System Mgmt. Supply / Deficit		995	508	259	908	428	487	
•	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		995	508	259	908	428	487	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	Ō	0	0	
Notes:									
•	Candidate New Supplies shown for year 2000 are identified				vailable imme	diately.			
1	Demand Reduction (Conservation) strategies assumed large	gely reflected in pr	rojected water	demands.					
2	Assumed purchase from Bexar County major provider. Ke	ndall County wate	r needs are n	ot reflected in	Bexar Count	y table.			
3	Early implementation of facilities assumed in cost estimation				l				
4	Option expected to provide additional water supply in many	y years, but depen	dable supply	during drough	<u>nt is presently</u>	unquantified.			

Environmental/Conservation Alternative Regional Water Plan Medina County

South C	entral Texas Region						(County =	Medina
County S	Summary of Projected Water Needs (Shortag	es) and Water	Manager	nent Strate	gies			Jser Grou	
Proloctor	d Water Needs (acft/yr)								· · · · · · · · ·
Projected	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,015			2,427	2,582		Notes
	Industrial		2,015		2,206 0	2,921	2,582	2,750 0	
	Steam-Electric		0		<u>ö</u>		0	0	
	Mining		68	68	70	72	74	76	
	Irrigation		98,916		91,320	92,320	88,925	84,692	
	Total Needs		100,999	97,446	93,596	94,819	91,581	87,518	
	Mun, Ind, S-E, & Min Needs		2.083		2,276	2,499	2,656	2,826	
	Irrigation Needs		98,916		91,320		88,925	84,692	
				55,200	01,000	Ų D Į O Ū O	00,000	0 1,002	
Water Ma	anagement Strategles (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		200	205	211	73	76	78	1
L-15	Edwards Irrigation Transfers	81,000	3,000	3,000	3,000	3,000	3,000	3,000	2, 3
	· · · · · · · · · · · · · · · · · · ·								
				[I					
				ļI					
SCTN-4	Brush Management								
SCTN-5	Weather Modification				· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •			
SCTN-9	Rainwater Harvesting								
5,5,111	Small Aquifer Recharge Dams						-		4
L-10 (irr.)	Damand Reduction (Conservation)		11,867	11,867	11,867	11,887	11,867	11,867	5
	Total New Supplies	-	15,067		15,078	14,940	14,943	14,945	
				10,012	10,010	7 7/0 10	1 1,0 10	1 1,5 10	
	Total System Mgmt. Supply / Deficit		-85,932	-82,374	-78,518	-79,879	-76,638	-72,573	
	Mun, Ind, S-E, & Min System Mgmt. Supply /	** *********	1,117		935	574	420	252	
	Deficit		.,	',•=-					
	Irrigation System Mgmt. Supply / Deficit		-87,049	-83,401	-79,453	-80,453	-77,058	-72,825	
	inigation System ingint: Supply / Delicit		-01,049	-03,401	-19,433	-00,433	-77,030	72,023	
Notes:									
•	Candidate New Supplies shown for year 2000 are identifie	d for priority imple	nentation, hu	l will not be a	railable imme	dialety.			
1	Demand Reduction (Conservation) strategies assumed lar						t		
2	Candidate New Supply to be shared among Uvalde, Medir				y not be rella	able in drougt	11.		
3	Pursuant to draft EAA Critical Period Management rules, C	andidate New Sur	ply represen	ls approximat	ely 85 percen	it of			
	the estimated maximum potential annual transfer (95,430 a	acft) based on Pro	posed Permit	s prorated to	100,000 acft/	ır.			
4	Option expected to provide additional water supply in man	y years, but depen	dable supply	during drough	it is presently	unquantified			
5	Estimates based upon use of LEPA systems on 80 percen				lion at 40 per	cent of irrigat	ion		
	application rate, but applicable to only 50 percent of Edward	rds Aquiler imigatio	n permitted o	uantities.		<u> i</u>	I		

Environmental/Conservation Alternative Regional Water Plan Uvalde County

South C	entral Texas Region							County =	- Uvalde
	ummary of Projected Water Needs (Shortag	es) and Water	Manager	nent Strat	egies		1	User Grou	
Projector	l Water Needs (acft/yr)				1				
riojected	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,682	3,166	3,493	4,241	4,880	5,609	MOTES
	Industrial		2,002	3, 100	3,483	4,241	4,880 0	0	
	Steam-Electric		ŏ	ŏ	- 0	~ ~ i	<u>0</u>	- 6	
	Mining		ŏ	0	 	ŏ l	ŏ	ŏ	
	Irrigation		75,263	72,798	70,154	71,022	68,880	65,676	
	Total Needs		77,945	75,964	73,647	75,263	73,760	71,285	
	Mun, Ind, S-E, & Min Needs		2,682	3,166	3,493	4,241	4,880	5,609	
	Irrigation Needs		75,263	72,798	70,154	71,022	68,880	65,676	
	nagement Strategies (acft/yr)	Candidate			1				
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		318	346	371	235	258	283	1
L-15	Edwards Irrigation Transfers	81,000	3,000	4,000	4,000	5,000	5,000	6,000	2, 3, 4
		_							
SCTN-4	Brush Management								5
SCTN-5	Weather Modification								5
SCTN-9	Rainwater Harvesting								5
	Small Aquifer Recharge Dams								5
L-10 (in.)	Demand Reduction (Conservation)		14,143		14,143	14,143	14,143	14,143	6
	Total New Supplies		17,461	18,489	18,514	19,378	19,401	20,426	
	Total System Mgmt. Supply / Deficit		-60,484	-57,475	-55,133	-55,885	-54,359	-50,859	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		636	1,180	878	994	378	674	·
	Irrigation System Mgmt. Supply / Deficit	_	-61,120	-58,655	-56,011	-56,879	-54,737	-51,533	
Notes:									
Notes:	Candidate New Supplies shown for year 2000 are identifie	d for adarity imale	mentation by	t will not be a	vollable imme	diolohe			
1	Demand Reduction (Conservation) strategies assumed large				Vanaule intime	ulately.			
	Candidate New Supply to be shared among Uvalde, Medir				av not ha relis	ble in drough	nt l		
3	Pursuant to draft EAA Critical Period Management rules, C	andidate New Sur	ooly represen	le approximat	ely 85 percen	1 of	**		
-	the estimated maximum potential annual transfer (95,430 a								
4	Early implementation of facilities assumed in cost estimation								
5	Option expected to provide additional water supply in many				it is presently	unquantified			
6	Estimates based upon use of LEPA systems on 80 percent				tion at 40 per	cent of irrigat	ion		
	application rate, but applicable to only 50 percent of Edwar	ds Aquifer imigatio	n permitted q	uantities.					

Environmental/Conservation Alternative Regional Water Plan Wilson County

South C	entral Texas Region							County =	- Wilsor
	ummary of Projected Water Needs (Shortage	s) and Water	Managen	nent Strate	gles			User Grou	
Duelesta	100 A Al d d		1	1					
Projected	Water Needs (acft/yr)								** -
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0		0	0		145	
	Industrial		0		0	0	0	0	
	Steam-Electric		0		0	0	<u> </u>	0	
	Mining		0		0	0		0	
	Irrigation		0		0	0		0	
	Total Needs		0		0	0		145	
	Mun, Ind, S-E, & Min Needs		0	0	0	0	63	145	
	Irrigation Needs		Ō	0	0	0	0	0	-
Mateu Me	no no mont Chroto plan (a dilum)	Condition							
vvater ma	nagement Strategles (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		171	183	194	114	122	130	
SCTN-2a	Carrizo Aquifer - Local Supply						200	200	
·									
				<u> </u>					
	<u> </u>		 	l					
			ļ						
				ļ			···		
SCTN-4	Brush Management								
SCTN-5	Weather Modification			ļ					
SCTN-9	Rainwater Harvesting								
10 //	Small Aquifer Recharge Dams Demand Reduction (Conservation)			l				———	
L-10 (lrr.)			4-4	400		444		200	
,	Total New Supplies	· _	171	183	194	114	322	330	
	Total System Mgmt. Supply / Deficit		171	183	194	114	259	185	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		171	183	194	114	259	185	
	Deficit		'''	103	194	117	255	.03	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	
Notes:			لبببا	اـــــا					
<u> </u>	Demand Reduction (Conservation) strategies assumed largely reflected in projected water demands.								
2	Additional well(s) for Floresville.	·	لـــــا	<u> </u>					
3	Option expected to provide additional water supply in man	years, but depen	dable supply	driving group	<u>it is presently</u>	unquantified	l	<u>i</u>	

Environmental/Conservation Alternative Regional Water Plan Zavala County

South Co	entral Texas Region							County:	= Zavala
County S	ummary of Projected Water Needs (Shorta	ges) and Wat	er Manag	ement Str	ategles			Jser Grou	p(s) = all
Projected	Water Needs (acft/yr)					-			
. 70,0000	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0		0	0	0		110165
	Industrial					\	0	-	
	Steam-Electric		ŏ		<u>ŏ</u>	<u>ŏ</u>	ŏ	i – š	
	Mining		Ō		Ö	Ö	Ö		
	Irrigation		80,722	76,589	72,655	88,293	84,673		
	Total Needs		80,722	76,589	72,655	88,293	84,673		
	Mun, Ind, S-E, & Min Needs		00,7.22	70,000	, <u>1,000</u>	00,200	04,070	0,,200	
	irrigation Needs		80,722	76,589	72,655	88,293	84,673	81,200	
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		190	193	194	80	103	104	1
-									
SCTN-4	Brush Menagement								2
SCTN-5	Weather Modification								2
SCTN-9	Rainwater Harvesting								2
L-10 (lrr.)	Small Aquifer Recharge Dams Demand Reduction (Conservation)		6,401	6,401	6,401	8,401	8,401	0.404	2
L-10 (III.)								6,401	3
w.t.	Total New Supplies		6,591	6,594	6,595	6,491	6,504	6,505	
	Total System Mgmt. Supply / Deficit		-74,131	-69,995	-66,060	-81,802	-78,169	-74,695	
Mun	, Ind, S-E, & Min System Mgmt. Supply / Deficit		190	193	194	90	103	104	
	Irrigation System Mgmt. Supply / Deficit		-74,321	-70,188	-66,254	-81,892	-78,272		
Notes:									
1	Demand Reduction (Conservation) strategies assumed la	rgely reflected in	projected wa	ler demands.					
2	Option expected to provide additional water supply in many years, but dependable supply during drought is presently unquantified.								
3	Estimates based upon use of LEPA systems on 50 perce	nt of acreages imi	ated in 1997	, with conser	vation at 20	percent of Irri	gation		
	application rate.								

Environmental/Conservation Alternative Regional Water Plan Simulated Comal Springs Discharge

Environmental/Conservation Alternative Regional Water Plan Simulated San Marcos Springs Discharge

Environmental/Conservation Alternative Regional Water Plan Simulated Edwards Aquifer Pumpage

Environmental/Conservation Alternative Regional Water Plan Simulated Edwards Aquifer Levels

Environmental/Conservation Alternative Regional Water Plan Additional Carrizo Groundwater Pumpage

Note: Drawdown is referenced to simulated 1994 aquifer levels and includes both projected local demands and development of water supply options in this alternative regional water plan.

Monitoring Well Location

Environmental/Conservation Alternative Regional Water Plan Simulated Carrizo Aquifer Drawdown

Environmental/Conservation Alternative Regional Water Plan - Carrizo Aquifer

Environmental/Conservation Alternative Regional Water Plan Streamflow Comparisons

Environmental/Conservation Alternative Regional Water Plan Streamflow Comparisons

Environmental/Conservation Alternative Regional Water Plan Streamflow Frequency Comparisons

·	<u> </u>	,				i					·		1	1	1		
South Central Texas Regi			ļ	 	<u> </u>			:	!		<u></u>	!		<u></u>			
Water Supply Option Sum	mary" RTED BY ENVIRONMENTAL COMPOSITE AVERAGE)	 	 	 			 	1			 	 	 		<u> </u>	 	
Environmental Matrix (50	KIED BY ENVIRONMENTAL COMPOSITE AVERAGE)	<u> </u>	<u> </u>		1							 		<u> </u>		<u> </u>	
		Type of Water Supply Option		ndangered	Unique Stream	litative Measure Bavs A	s of Environment	riparian			Water		Environmental Composite	Efficiency / Unit Cost	Quantity of Water	Time to Implement	Impacted
Row Section Option No. No.	Water Supply Options	Type of Water Supply Option	Type of Water Supply	Species	Segment	Estuaries	Flows	Forests				Sustainability				(years)	
15 1.10 ISCTN-17 Desatinat	Treated Water Supply Options	Land Constant Control	Tenand History Daliment		1 1	1	1	11 11	1	1		11	1 1.0	564	476	1 10 5	
	tion of Bradosh Groundwater Reservoir Water Released to Lake Notite - Treated Water to Distribution System or Recharge Zone	Local/Conservation/Reuse/Exchange Existing Reservoirs	Treated Water Distributed		1		1	1	1			1	1 1,0	672	15,000 125,000	1 to 5	
	River in Colorado County - Buy Stored Water and Imgation Rights: Firm Yield be River Oliversion at Gonzales to Mid-Cities and/or Major Water Providers, with Regional Water Treatment Plant	River Diversion with Storage River Diversion with Storage	Treated Water Distributed Treated Water Delivered	 		 			 		 	11	1 1.0	736	29,217	1105	<u> </u>
40 4.4 C-13C Colorado	River at Bastrop - Purchase of Stored Water - Firm Yield	Existing Reservoirs	Treated Water Distributed	‡ ;			1	1	1			1	1.0	769 1 494	50,000 1,048	5 to 15	
	yy and Woodcreek Water Supply from Carryon Reservoir; 2030 Demands Viscox Aquifer between San Marcos and Fino Rivers (75,000 activy)	Existing Reservoirs Carrizo and Other Aquifers	Treated Water Delivered Treated Water Distributed	+	1	1	1		<u> </u>	1		11	2 1.1	590	75,000	1 to 5	
30 3.2a SCTN-16a Lower Gu	addupe River Diversions	River Diversion with Storage	Treated Water Distributed	ަ			1	1	1 1		1	1	1 1,1		56.276 69.000	1 to 5	1.
	River in Wharton County - Buy Infgation Rights and Groundwater, Firm Yield ALease Surface Water Imgation Rights for Municipal/Industrial Use	River Diversion with Storage River Diversion with Storage	Treated Water Distributed Treated Water Delivered				1					1	1 1.1	1.007	40,000	5 to 15	2, 3,
	Aquifer - Bastrop, Lee, and Millam Counties with Delivery to Major Municipal Demand Center elopment of Water Supply with Corpus Christi - Firm Yield	Carrizo and Other Aquifers	Treated Water Distributed Treated Water Distributed		 		1 1	1 1	1	<u> </u>	 	3	2 12 1 1.2	1,015	75,000 79,000	1 to 5	
3.6a SCTN-20a Lower Co	plorado River Basin - Water Sales Contract for Unused Impation Water Supplies	Existing Reservoirs River Diversion with Storage	Treated Water Distributed	<u> </u>			1		1			11	1 12	1,041	100,060 112,016	5 to 15	5,
	tion of Seawater (100 MGD) tion of Seawater (75 MGD)	Local/Conservation/Reuse/Exchange Local/Conservation/Reuse/Exchange	Treated Water Distributed Treated Water Distributed				1					21	1 12	1,407	84,012	1 to 5	
12 1.10 SCTN-17 Desatinat	ion of Seawater (50 MGD) ion of Seawater (25 MGD)	Local/Conservation/Reuse/Exchange	Treated Water Distributed	Γ —-	 	 	2) <u>1</u> 2) 1	1 1		1		21	1 12	1,447	56,008 28,004	1 to 5	
	Micox Aquifer between Cotorado and Fino Rivers	Carrizo and Other Aquifers	Treated Water Distributed Treated Water Distributed				1. 1	11 1				11	3 1.3	632	220.000	1 10 5	1,
32 3.2c SCTN-16c Lower Gu	addupe River Diversions addupe River Diversions	River Diversion with Storage River Diversion with Storage	Treated Water Distributed Treated Water Distributed		<u> </u>	1	1	1			1	1	1 1.4		94,000 74,000	1 10 5	2.0
39 4.3b SCTN-14b Light Dev	relopment of Water Supply with Corpus Christi - Firm Yield	Existing Reservoirs	Treated Water Distributed	<u> </u>			2	21 1	1			31	1 14		148,200	1 to 5	
	itorado River Basin - Diversion of Unappropriated Streamflow Horado River Basin - Combined Diversion of Unused Imgation Water Supplies and Unappropriated Streamflow	River Diversion with Storage River Diversion with Storage	Treated Water Distributed Treated Water Distributed				21 2	2 1	1			1	1.6	1,003	57,037 117,077	5 to 15	3.
41 5.1 S-15C Cibolo Re	eservoir - Firm Yield	Potential New Reservoirs	Treated Water Distributed	Ľ!		1	11 2	21 3	3			1!	1 1.8	1,131	33.200 4,032	5 to 15	16.
	te Reservoir - Firm Yield pek Roservoir - Firm Yield	Potential New Reservoirs Potential New Reservoirs	Treated Water Distributed Treated Water Distributed	+ = 3		Si .	1 2	2 2	1			11	1 13	1,016	57,800	5 to 15	2. 9.
60 5.15 SCTN-15 Cummins	Creek Off-Channel Reservoir (Colorado River Basin) eservoir with Imported Water from the San Antonio and Guadalupe Rivers - Firm Yield	Potential New Reservoirs	Treated Water Distributed	F		1	2 2	2 2	2		1	31	1 1.9	1,111 773	45,712 91,942	5 to 15	17,
42 5.2a S-15Da Cibolo Re	eservoir with Imported Water from the San Antonio River - Firm Yield	Potential New Reservoirs Potential New Reservoirs	Treated Water Distributed Treated Water Distributed	<u> </u>			2 2	3	3			3	1 21	779	69,925	5 to 15	16.
	sservoir with Imported Water from the Guadatupe River Saltwater Barrier - Firm Yield end Reservoir - Firm Yield (Colorado River Basin)	Potential New Reservoirs Potential New Reservoirs	Treated Water Distributed Treated Water Distributed	F		31	2 2	2! 3 2! 3	3	·		1	1 21	1,178	51,576	5 to 15	13,0
46 5.3b S-15Eb Cibolo Re	eservoir with Imported Water from the Guadatupe River Sattwater Barrier and the Colorado River near Bay City	Potential New Reservoirs	Treated Water Distributed	I		3	2 2	2 3	3			1	1 2.1	1,357	79,090 152,606	5 to 15	17, 41,
	eservoir - Firm Yield eservoir with Imported Water from the San Antonio, Guadatupe, and Colorado Rivers - Firm Yield	Potential New Reservoirs Potential New Reservoirs	Treated Water Distributed Treated Water Distributed				2 2	2 3	3			31	1 2.3	965	106,482	5 to 15	17,
	aservoir - Firm Yleld Creek Reservoir - Firm Yleld	Potential New Reservoirs Potential New Reservoirs	Treated Water Distributed Treated Water Distributed	II		<u> </u>	31 3	31 3	3		 	3	1 2.4	856 865	99,687 80,836	> 15	28. 27.
	Raw Water in Aquifer Water Supply Options	Potential New Nescribins	Theatec Water Displayed														
	ake - Existing Rights and Contracts with Imigation Use Reduction for Recharge Enhancement Aquifer Recharge from Natural Drainage - Type 2 Projects (Program 2C)	Edwards Aquiler Recharge Edwards Aquiler Recharge	Raw Water in Aquifer	ፗ──┼		1	1) 1	<u>!i </u>	1 1	<u> </u>	1	1!	1 1,0	193 486	8,136 13,451		- 2
27 2.6 SCTN-6a Edwards	Aguiler Recharge Enhancement with Guadalupe River Diversions at Lake Dunlap (SCTN-6a)	Edwards Aquifer Recharge	Raw Water in Aquifer Raw Water in Aquifer	<u> </u>			1 2	1	1			1	12	534	42,121	5 to 15	
	e Reclaimed Water for Edwards Imigation Water puller Optimization	Local/Conservation/Reuse/Exchange Carrizo and Other Aquifers	Raw Water in Aquifer Raw Water in Aquifer	 2			1 1	1			 	31	1 1.2	743 1,886	10.300 390	1 to 5	
68 6.4 SCTN-7a Winterga	rden Camzo Recharge Enhancement (Nueces River Alternative)	Carrizo and Ciner Aquilers	Raw Water in Aquifer			ļ	1 3	1				1	1 1.3	511 627	11,000 7,200	5 to 15 5 to 15	1,
	rden Carrizo Recharge Enhancement (Atascosa River Atternative) Aquifer Recharge Enhancement with Guadatupe River Diversions near Gonzales (SCTN-6b)	Carrizo and Other Aquillers Edwards Aquiller Recharge	Raw Water in Aquifer Raw Water in Aquifer	+		<u> </u>	21 2	1	<u> </u>			1	1 1.3	1,941	- 51,133	5 to 15	
	pe River Diversion near Comfort to Recharge Zone via Medina Lotte of Canyon Reservoir Flood Storage to Recharge Zone via Ciboto Creek - Long-Term Average	Edwards Aquifer Recharge	Raw Water in Aquiter	Ţ <u>?</u>	!	3)	1 2	2! 1	1 2	1	 -	1	1 14		3,902	1105	
22 2.2 L-18b Edwards	Aquiller Recharge from Natural Dranage - Type 2 Projects (Program 28)	Edwards Aquiter Recharge Edwards Aquiter Recharge	Raw Water in Aquiter Raw Water in Aquiter			1	1 1	2	2			11	1 1.8	800	15,980 21,577	5 to 15	4
	Aquiter Recharge from Natural Drainage - Type 2 Projects (Program 2A) Aquiter Recharge from Natural Crainage - Type 1 Projects (Program 18)	Edwards Aquifer Recharge Edwards Aquifer Recharge	Raw Water in Aquifer Raw Water in Aquifer	I - 2		31 31	1 1	3	3			3) 1/	1 1.9	1,087 2,557	21,577 1,958 5,564	5 to 15	4, 8,
	Aquifer Recharge from Natural Drainage - Type 1 Projects (Program 1A)	Edwards Aquifer Recharge	Raw Water in Aquiler				11 1	3	3			31	1 22	3,309	5,554	5 to 15	4
9 1.9 SCTN-12b Exchange	Raw (Surface) Water Supply Options of Groundwater from the Gutf Coast Aquater for Imagaton Surface Water Rights (Colorado River Basin)	Local/Conservation/Reuse/Exchange	Raw Water at Source	-		1	1 1	li 1	. 1	1	1	11	1 1.0	518	10,748	1 to 5	
64 6.3 SCTN-3a Simsboro	Aquifer - Bastrop, Lee, and Milam Counties with Delivery to Colorado River	Carrizo and Other Aquifers	Raw Water Delivered	<u> </u>			1 1	1	1			1	2 1.1		75,000 75,000	1 to 5	
10 1.9 SCTN-12b Exchange) Aquifer - Bastrop, Lee, and Millam Counties with Delivery to Plum Creek e of Groundwater from the Gulf Coast Aquifer for Infgation Surface Water Rights (Guadalupe-San Amonio River Ba	Carrizo and Other Aquifers si Local/Conservation/Reuse/Exchange	Raw Water Detivered Raw Water at Source	+===i	i		1 1					11	1 1.1	437	13.200	1 20 5	
	Reservoir - Raw Water at the Reservoir	Potential New Reservoirs	Raw Water at Reservoir		<u> </u>		1: 2	<u> </u>	1	1	1	31	1 12	764	5.627 17.000	5 to 15	2
5]1.5 [L-14 Transfer	of SAWS Reclaimed Water to Coleto Creek Reservoir (Exchange for CP&L Rights and GBRA Carryon Contract) of Reclaimed Water to Corpus Christi through Choke Carryon Reservoir	Local/Conservation/Reuse/Exchange	Raw Water at Reservoir	+ = = = = = = = = = = = = = = = = = = =			11 2	21	<u> </u>			31	1 13	297	23,903		
56 5.13 SCTN-13 Parmetto 58 5.13 SCTN-13 Parmetto	Bend Stage II Reservoir (Delivery to Corpus Christi) Bend Stage II Reservoir (Delivery to Bay Criv)	Potential New Reservoirs Potential New Reservoirs	Raw Water Delivered Raw Water Delivered	 			2 1	2	1		1	 	1 1.4		30,200	5 to 15 5 to 15	4,
57 5.13 SCTN-13 Palmetto	Bend Stage II Reservoir (Delivery to Bay City) Bend Stage II Reservoir (Delivery to Sartwater Barrier)	Potential New Reservoirs	Raw Water Delivered	<u> </u>			21 1	2	<u> </u>			11	1 1.4		28,100 57,080	5 to 15	31
52 5.9 G-22 Ditworth	esenoir - Raw Water at the Resenoir Resenoir - Raw Water at the Resenoir	Potential New Reservoirs Potential New Reservoirs	Raw Water at Reservoir Raw Water at Reservoir	╁			11 3	2				2	1 1.7	446	19,705	> 15	15 21
	: Reservoir - Firm Yield vossing Reservoir - Raw Water at the Reservoir	Potential New Reservoirs	Raw Water at Reservoir			<u> </u>	21 2	2 2	3			1	1 22		69,897 32,458	> 15 > 15	
49 5.6 G-19 Guardatur	pe River Dam No. 7 - Firm Yield	Potential New Reservoirs Potential New Reservoirs	Raw Water at Reservoir Raw Water at Reservoir			şi	1 2	3	3		<u> </u>	11	1 22	732	30.890	> 15	
1 1.1 L-10 (Mun.) Demand	Other Water Supply Options Reduction (Water Consensation) - Municipal	Local/Conservation/Reuse/Exchange					1;	ı -	,		;	1	1 10	-400	~43,000	1 to 5	,
1,1 L-10 (Irr.) Demand	Reduction (Water Conservation) - Impation	Local/Conservation/Reuse/Exchange		上二二			1		1			1	1 1.0	-34	-80,000	1 to 5	
7 1.7 SCTN-5 Weather	or Lease of Edwards Imigation Water for Municipal and Industrial Use Modification	Local/Conservation/Reuse/Exchange Local/Conservation/Reuse/Exchange	Raw Water in Aquifer	┌─┤	1 1	 	1 1	1	1			11	1.0	Undetermined	95430 Max. Undetermined	1 to 5	Undetermi
	r Harvesting ater Supplies for Municipal Water Systems in the Camzo-Wilcox Aquiller	Local/Conservation/Reuse/Exchange		$\perp =$			1 1		<u> </u>			11	1 1.0	16,178	,057/household N/A	1 to 5	i
70 6.6 SCTN-2b Groundw	ater Supplies for Municipal Water Systems in the Gulf Coast Aquifer	Carrizo and Other Aquilers Carrizo and Other Aquilers	 	+==	1 1		1	1	1			1	1.0	N/A	N/A	1 to 5	
	ater Supplies for Municipal Water Systems in the Trinky Aquifer torage and Recovery (ASR) - Regional Option	Carrizo and Other Aquifers		!	1		1 1	1	1 1			1	1.0	2428 to 1009	2,792	1 to 5	
73 6.9 SCTN-1b Aquiter S	torage and Recovery (ASR) - Local Option	Carrizo and Other Aquifers Carrizo and Other Aquifers	 	+	1 1		1	1	<u> </u>	<u> </u>		1:	1 1.0	2,089	279 10.000	1 to 5	
	nel Local Storage (Guadatupe River near Victoria) Inapement	Local/Conservation/Reuse/Exchange Local/Conservation/Reuse/Exchange	Treated Water Delivered	T	1 1		1: 1 1: 1	11 2	· 1		1	11		Undetermined	Undetermined	> 15	Undeterm
18 1.11 SCTN-10 Off-Chan 17 1.11 SCTN-10 Off-Chan	inagement net Local Storage (Medina River near Von Ormy) net Local Storage (Guadatupe River near Boerne)	Local/Conservation/Reuse/Exchange	Treated Water Delivered	 - ==	1 1		1		<u> </u>	1	1 :	31	1 12	1,190	5.000	1 100	<u> </u>
	Anna and Anna (Anna and Anna a	Local/Conservation/Reuse/Exchange	Treated Water Delivered	匚——	2 :	<u>и</u>	11 2	<u> </u>	<u> </u>		. 1	<u> </u>	-1.4	2,001			
ites:! This is the list of stand-alone options as pr	esented in Volume III. As these options were fitted into the Regional Water Plan, the quantities were modified (in sure based on estimates of Land Impacted (High) > 4000 as 1,000 as 1		<u> </u>	上二二		<u> </u>	<u> </u>						<u> </u>			 	
Emironmental Impacts (with the exception	o of Size / Mahitati are assed 3 and when as a solution as a smooth in 1000 dc, LOW 1000 dc,		1	`	oran							<u> </u>	<u> </u>				
r YVALOT CULALITY NORTH IS AID INDICATION OF THE	TRISTING WATER OUTSING IN THE SIMPLE SECTION 1 has no imparison of the contract of the contrac	for TMDI & 3 has impairment with an		==					-			 	<u> </u>	<u> </u>			
oussemble resource. 1 = High, Renewable resources	urce, no mining; 2 = Medium, Limited mining (<200 ft additional drawdown); and 3 = Low, Mining (>200 ft additional drawdown); and 3 = Low, Mining (>200 ft additional drawdown);	drawdown).	in or regin priority for (Mg)			1	<u> </u>			:		,	<u> </u>			<u> </u>	
	· · · · · · · · · · · · · · · · · · ·																

Volume III			Nat	ter	TNRCC	Stream	Stream	Water Quality
Section	Option	Water Supply Options (Sorted By Water Quality Score)		slity	1		_	Impairment
No.	ID	water Supply Options (Softed By Water Quality Score)	Ι.		Priority	Segment	Segment	•
140.	10		ico	ote,	Level ^z	Number(s) ³	Name(s) ³	Description
1.10	S0701 47	Treated Water Supply Options						
6.1	SCTN-17 CZ-10C	Desatination of Brackish Groundwater Carrizo-Wilcox Aguiter between San Marcos and Frio Rivers (75,000 activyr)	₽÷					
6.2	CZ-10D	Carrizo-Wilcox Aquifer between Colorado and Frio Rivers	╂╌╌┧	;		· · · · · · · · · · · · · · · · · · ·		
4.1	G-15C	Canyon Reservoir Water Released to Lake Note - Treated Water to Distribution System or Rechame Zone	╇╗	i 				,
3.3	C-17A	Colorado River in Colorado County - Buy Stored Water and Impation Rights: Firm Yield	╆⋾	1				
6.3 5.12	SCTN-3c	Simsboro Aquifer - Bastrop, Lee, and Milam Counties with Delivery to Major Municipal Demand Center	+-1					
3.1	G-16C1 G-38C	Cuero Raservor - Firm Yield Guadatupe River Diversion at Gonzales to Mid-Cities and/or Major Water Providers, with Regional Water Treatment Plant	17	-				
3.2c	SCTN-16c	Lower Guadatupe River Diversions	1-1					- .
4,4	C-13C	Colorado River at Bastrop - Purchase of Stored Water - Firm Yield	╂╾┯	i 				
3.2b	SCTN-16b	Lower Guadatupe River Diversions	┿⋾	1				
3.2a 3.6c	SCTN-16a SCTN-20c	Lower Guadatupe River Diversions	上二				•	
3.4	C-17B	Lower Colorado River Basin - Combined Diversion of Unused Imigation Water Supplies & Unappropriated Streamflow Colorado River in Whatton County - Buy Imigation Rights and Groundwater; Firm Yield	┸╌	}				
5.3a	S-15Ea	Cibolo Reservoir with Imported Water from the Guadalupe River Saltwater Barrier - Firm Yield	┦╌ ┊	i 				
3.6b	SCTN-20b	Lower Cotorado River Basin - Diversion of Unappropriated Streamflow	ऻ ~⋾					
3.5 5.16	SCTN-11 B-10C	Purchase/Lease Surface Water Imigation Rights for Municipal/Industrial Use	上三	1				
3.6a	SCTN-20a	Allens Creek Reservoir - Firm Yield Lower Colorado River Basin - Water Sales Contract for Unused Irrigation Water Supplies	\mathbf{L}	}				
5.15	SCTN-15	Cummins Creek Off-Channel Reservor (Cotorado River Basin)	╀┪	 				
5.1	S-15C	Cibolo Reservoir - Firm Yield	╄┪	1				
5.14	C-18	Shaws Bend Reservoir - Firm Yield (Colorado River Basin)	十三					
5.3b 4.2	S-15Eb G-24	Citado Reservoir with Imported Water from the Guadalupe River Saltwater Barrier and the Colorado River near Bay City	上二					
1.10	SCTN-17	Wimberley and Woodcreek Water Supply from Canyon Reservoir; 2030 Demands Desalination of Seawater (100 MGD)	$-\frac{1}{2}$		- 	2462	San Antonio, Hynes, & Guadatupe Bays	Restrictions on Harvesting of Shellfish
1.10	SCTN-17	Desafination of Seawater (75 MGD)	╀╧		1	2462	San Antonio, Hynes, & Guadatupe Bays San Antonio, Hynes, & Guadatupe Bays	Restrictions on Harvesting of Shellfish
1.10	SCTN-17	Desafination of Seawater (50 MGD)	┯┋	2	<u> </u>	2462	San Antonio, Hynes, & Guadalupe Bays	Restrictions on Harvesting of Shellfish
1.10	SCTN-17	Desatination of Seawater (25 MGD)	T-2	2	L	2462	San Antonio, Hynes, & Guadalupe Bays	Restrictions on Harvesting of Shellfish
5.2b 5.2a	S-15Db S-15Da	Cibolo Reservoir with Imported Water from the San Antonio and Guadalupe Rivers - Firm Yield Cibolo Reservoir with Imported Water from the San Antonio River - Firm Yield	<u>_</u>	3 7	M	1911	Upper San Antonio River	Bacteria (SA Only)
5.4		Golad Reservor - Firm Yield	1—-≟	; -	M	1911 1901	Upper San Antonio River Lower San Antonio River	Bacteria (SA Cnty) Fecal Colform
5.11	G-17C1	Sandies Creek Reservoir - Firm Yield	╀╌┪	- -	M	18038	Guadalupe River Below San Marcos	DO (Sandies Crk Only)
4.3b	SCTN-14b	Joint Development of Water Supply with Corpus Christi - Firm Yield	 	3	M	2116, 1911	Choke Canyon Reservoir/Upper San Antonio River	Bacteria in Upper Reservoir & SA River
5.2c 4.3a	S-15Dc	Cibolo Reservoir with Imported Water from the San Antonio, Guadalupe, and Colorado Rivers - Firm Yield	 	3	M	1911	Upper San Antonio River	Bacteria (SA Cnly)
5.5	SCTN-14a S-14D	Joint Development of Water Supply with Corpus Christi - Firm Yield Applewhite Reservoir - Firm Yield	匚릨	3	M	2116	Choke Canyon Reservoir	Bacteria in Upper Reservoir
	<u> </u>		3	5	M	1903	Medina River Below Medina Diversion Lake	Bacteria
2.3	S-13B	Raw Water in Aquifer Water Supply Options Medina Lake - Existing Rights and Contracts with Imagina Use Reduction for Recharge Enhancement	184					:
2.2	L-18c	Edwards Aquifer Recharge from Natural Drainage - Type 2 Projects (Program 2C)	₽ ∹	} 				
6.4	SCTN-7a	Wintergarden Carrizo Recharge Enhancement (Nueces River Alternative)	╂┷╡	i 			· - 	,
2.6	SCTN-6a	Edwards Adulfer Recharge Enhancement with Guardahme River Diversions at Lake Cumbes (SCTALSA)	一コ	1				
22	L-18b L-18a	Edwards Aquifer Recharge from Natural Drainage - Type 2 Projects (Program 28) Edwards Aquifer Recharge from Natural Drainage - Type 2 Projects (Program 2A)	<u> </u>	1				
6.10	SCTN-8	Trinity Aguifer Optimization	드극	: 1				
2.6	SCTN-6b	Edwards Aquifer Recharge Enhancement with Guadatupe River Diversions near Gonzales (SCTN-6b)	╂╼╴╅	i 1				
2.4		Cudualitie river Livinskin near Commit in Remains 700e via Marina Lako	-1	1				
2.1 2.5	L-17a G-32	Edwards Aquifer Recharge from Natural Drainage - Type 1 Projects (Program 1B)	<u> </u>					
6.4	SCTN-7b	Diversion of Carryon Reservoir Flood Storage to Recharge Zone via Ciboto Creek - Long-Term Average Wintergarden Carrizo Recharge Enhancement (Atascosa River Alternative)	무냥	! 				
1.2	L-11	Exchange Reclaimed Water for Edwards Impation Water	∐ -₹	. 	M	2107 1911	Alascosa River Upper San Antonio River	Bacteria & DO Bacteria
2.1	L-176	Edwards Aquifer Recharge from Natural Drainage - Type 1 Projects (Program 1A)	┢╌┋	3	M	2113	Upper Frio River	DO
		Raw (Surface) Water Supply Options						
6.3	SCTN-3a	Simsboro Aquifer - Bastrop, Lee, and Milam Counties with Delivery to Colorado River	7	1 [
6.3	G-20 SCTN-36	Gonzales Reservor • Firm Yield	ロュ	╚				
5.13	SCTN-13	Simsboro Aquifer - Bastrop, Lee, and Milam Counties with Delivery to Plum Creek Palmetto Bend Stage II Reservoir (Delivery to Corpus Christi)	ᅜᅾ	! 				
1.9	SCTN-12b	Exchange of Groundwater from the Gulf Coast Aquifer for Impation Surface Water Rights (Guardanne San Antonio Page Regio)	┡	; 				
5.10			┝╸╅	,			· · · · · · · · · · · · · · · · · · ·	
1.9 5.13	SCTN-12b	Exchange of Groundwater from the Gulf Coast Amiring for Impation Surface Misses Siebes (Categoric Sieb	<u> </u>	1				
5.13	OCH PIS	Palmetto Bend Stage II Reservoir (Delivery to Bay City) Palmetto Bend Stage II Reservoir (Delivery to Saltwater Barrier)	\Box $\overline{\Box}$	<u> </u>				
5.6		Guadalupe River Dam No. 7 - Firm Yield	Ľ ‡	! 				
5.8	G-21	Lockhart Reservoir - Raw Water at the Reservoir	├ ┈ᅻ	; 			- <u> </u>	· · · · · · · · · · · · · · · · · · ·
5.9	G-22	Diworth Reservoir - Raw Water at the Reservoir	<u> </u>	2	L	18048	Guadatupe River Below Comal River	Bacteria
1.4	L-20 L-14	Transfer of SAWS Reclaimed Water to Coleto Creek Reservoir (Exchange for CP&L Rights and GBRA Canyon Contract)	<u> </u>	3	M	1911	Upper San Antonio River	Bacteria (SA Only)
5.17	L-14	Transfer of Reclaimed Water to Corpus Christi through Choke Canyon Reservoir Cotulia Reservoir - Raw Water at the Reservoir	⊏₹	<u> </u>	M	2116, 1911	Choke Canyon Reservoir/Upper San Antonio River	Bacteria in Upper Reservoir & SA River
			3	·	M	2104	Nueces River Above Frio River	На
1.1	L-10 (Mun)	Other Water Supply Options Demand Reduction (Water Conservation) - Municipal	بالح					
1,1	L-10 (lm)	Demand Reduction (Water Conservation) - Intestion	⊢╬	; -				
1.3	L-15)	Purchase or Lease of Edwards Imigation Water for Numicipal and Industrial Lieu	┝╌┆	i 				
1.6	SUIN-4	Brush Management	<u> </u>	1				
		Weather Modification Rainwater Harvosting		<u> </u>				
1.8	SCTN-10	Off-Channel Local Storage (Guardahine River near Memoria)	二!	: 				L
1.8 1.11		UT-Channel Local Storage (Guadahine Rhipt near Recept)	┝┤	┼─┤	 			
1.11	_ SCIN-10			-				
1.11 1.11 6.5	SCTN-10 SCTN-2a	Groundwater Supplies for Manicinal Water Systems in the Carries Makes Asside	 7	1 1				
1.11 1.11 6.5 6.6	SCTN-2a SCTN-2b	Groundwater Supplies for Municipal Water Systems in the Carrizo-Wilcox Aquifer Groundwater Supplies for Municipal Water Systems in the Carl Coast Aquifer		1				
1.11 1.11 6.5	SCTN-2a SCTN-2b SCTN-2c	Groundwater Supplies for Municipal Water Systems in the Carrizo-Wilcox Aquifer Groundwater Supplies for Municipal Water Systems in the Gulf Coast Aquifer Groundwater Supplies for Municipal Water Systems in the Torigin Aguifer		1				
1.11 1.11 6.5 6.6 6.7	SCTN-10 SCTN-2a SCTN-2b SCTN-2c SCTN-1a SCTN-1b	Groundwater Supplies for Municipal Water Systems in the Carrizo-Wilcox Aquifer Groundwater Supplies for Municipal Water Systems in the Carl Coast Aquifer						

Notes:

1) Water Quality Score is an indication of the relative water quality in the stream segment: 1 has no impairment of stream use, 2 has impairment with low priority for TMDL, & 3 has a segment: 1 has no impairment of stream use, 2 has impairment with low priority for TMDL, & 3 has a segment: 1 has no impairment of stream use, 2 has impairment with low priority for TMDL, & 3 has a segment of development of Total Maximum Daily Load Assessment (TMDL) for the stream segment: 1 has no impairment with low priority for TMDL, & 3 has a segment segment segment segment segment segment: 1 has no impairment with low priority for TMDL, & 3 has a segment segment

"EREPA"

Economic/Reliability/Environmental/Public Acceptance

Alternative Regional Water Plan

South Central Texas Regional Water Planning Group

San Antonio River Authority

HDR Engineering, Inc. January 2001

South Central Texas Region Alternative Water Plans

Alternative Name: Economic/Reliability/Environmental/Public Acceptance

Alternative ID: EREPA

Alternative Description: The Economic / Reliability / Environmental / Public Acceptance Alternative Regional Water Plan is predicated on the development of water supply options having the least expected annual unit cost of water. Environmental considerations are incorporated using the same qualitative measures employed for the Environmental / Conservation (E/C) Alternative Regional Water Plan. Public acceptance at the source location and reliability in drought conditions are also considered in this alternative regional water plan.

The following water supply options are included in the Economic / Reliability / Environmental / Public Acceptance Alternative Regional Water Plan (in no particular order):

- 1. Demand Reduction / Conservation (L-10)
- 2. Edwards Irrigation Transfers (L-15)
- 3. Medina Lake Recharge Enhancement (S-13B)
- 4. Edwards Recharge Type 2 Projects (L-18c)
- 5. Edwards Recharge Guadalupe R. Diversions (SCTN-6a)
- 6. Carrizo Aquifer Wilson and Gonzales Counties (CZ-10C)
- 7. Carrizo Aquifer -- Atascosa, Gonzales, and Bastrop Counties (CZ-10D)
- 8. Colorado R. @ Columbus LCRA Irrigation & Stored Water (C-17A)
- 9. Canyon Reservoir (G-15C)
- 10. Wimberley & Woodcreek Canyon (G-24)
- 11. Carrizo Aquifer Local Supply (SCTN-2a)
- 12. Brush Management (SCTN-4)
- 13. Weather Modification (SCTN-5)
- 14. Rainwater Harvesting (SCTN-9)

This Page Intentionally Blank

EREPA Alternative Regional Water Plan Summary of Key Information for South Central Texas Regional Water Planning Group

Quantity, Reliability, and Cost

- Plan includes management supplies to meet projected needs, ensure reliability, and maintain springflow, resulting in a quantity of additional water supplies sufficient to meet projected needs for municipal, industrial, steam-electric power, and mining uses through the year 2050.
- Cost is the least among the five alternative plans under consideration.

Environmental Factors

- Increased median annual streamflows in the San Antonio River.
- Below average concerns with respect to all environmental factors evaluated for the five alternative plans under consideration.
- Least concerns with Vegetation & Wildlife Habitat and Ecologically Significant Stream Segments among the five alternative plans under consideration.

Impacts on Water Resources

- No unmitigated reductions in water available to existing water rights.
- Long-term reductions in water levels in the Carrizo Aquifer. Drawdown would be the greatest for the five alternative plans under consideration.

Impacts on Agriculture and Natural Resources

- Major commitment to municipal and irrigation water Demand Reduction (Conservation) (L-10).
- Includes Brush Management (SCTN-4) and Weather Modification (SCTN-5).
- Inclusion of water supply options to meet projected irrigation needs in full is estimated to be economically infeasible at this time. Weather Modification (SCTN-5) assists irrigation and dry-land agriculture (crops and ranching).
- Includes maximum potential voluntary transfer of Edwards Aquifer irrigation permits to municipal permits through lease or purchase.
- Includes Medina Lake Recharge Enhancement (S-13B) which reduces or eliminates water supplies from the Medina Lake System for irrigation in Bexar, Medina, and Atascosa Counties.

Other Relevant Factors per SCTRWPG

Comparison of Strategies to Meet Needs

 Selection of water supply options comprising the alternative plan based primarily on least unit cost.

Interbasin Transfer Issues

- Projected non-irrigation needs in basin(s) of origin are met throughout the planning period.
- Plan includes two interbasin transfers: 1) Edwards Recharge Guadalupe River Diversions (SCTN-6a) from the Guadalupe River near Lake Dunlap to the outcrop of the Edwards Aquifer in the San Antonio River Basin; and 2) LCRA Irrigation & Stored Water (C-17A) from the Colorado River at Columbus to Bexar, Comal, Guadalupe, and Hays Counties.

Third-Party Impacts of Voluntary Redistribution of Water

- Potential positive or negative effects of Edwards Irrigation Transfers (L-15).
- Lower water levels in some portions of the Carrizo Aquifer.

Regional Efficiency

- Edwards Irrigation Transfers (L-15) require no new facilities. Transferred water would likely be available at or very near locations having projected municipal, industrial, steam-electric power, and mining needs in Uvalde, Medina, Atascosa, and Bexar Counties.
- Terminal storage and regional water treatment facilities in Bexar and Guadalupe Counties increase efficiency, improve reliability, and reduce unit cost.
- Shared transmission facilities for Colorado River (C-17A), Carrizo Aquifer (CZ-10D), and Guadalupe River (G-15C) supplies reduce cost.
- San Antonio Water System Regional Aquifer Storage & Recovery System (SCTN-1a) substantially reduces peak summer pumpage from the Edwards Aquifer.
- Edwards Recharge Guadalupe River Diversions (SCTN-6a) provides for recovery and recirculation of enhanced Comal springflow resulting from implementation of Edwards Recharge Type 2 Projects (L-18c).

Effect on Navigation

• Not applicable.

South Central Texas Region, EREPA Alternitive – TWDB Evaluation Criteria Summary

Management Strategy	Quantity (acft/yr) 1	Reliability ²	Cost (\$/acft)3	_	Environmental Factors		Impacts on Water Resources	l I	mpacts on Agricultural and Natural Resources		Other Relevant Factors per SCTRWPG
Municipal Demand Reduction (Conservation) (L-10 Mun.)	44,566	Firm	\$173	•	None. Supply developed through deman reduction.	•	Slight reductions in treated effluent discharge.	•	Fewer water management strategies necessary to meet projected needs.	·	Conservation is a central element of the Plan.
Edwards Irrigation Transfers (L-15)	81,000	Firm	. \$80	•	None. Supply developed without new falities.	•	Reductions in springflow due to relocation of pumpage closer to springs.	•	Plan includes 53 percent of potential maximum voluntary transfer through lease or purchase.	•	Encourages beneficial use of available rights.
Edwards Recharge - Type 2 Projects (L-18c)	13,451	Firm	\$486	•	Concerns with endangered & threatened species, habitat, and TPWD Ecologically Unique Stream Segments at some sites. Enhanced springflows help endangered stries.	•	Limited, as most projects are located on streams that are frequently dry. Increased aquifer levels and springflows.	•	Typically higher well levels in Uvalde & Medina Counties.	•	Positive effects on discharges from Comal and San Marcos Springs. Mitigation of impacts on firm yield of Choke Canyon Res. / Lake Corpus Christi System.
Medina Lake Recharge Enhancement (S-13B)	8,136	Firm	\$159	•	Concerns with endangered & threatened species.	•	Increased lake levels, aquifer levels, and springflows.	•	Potentially eliminates irrigation from the BMA Canal System.	·	Owner of the Medina Lake System opposed to inclusion of this strategy in the Plan.
Edwards Recharge – Guadalupe River Diversions (SCTN-6a)	42,121	Firm	\$534	•	Concerns with endangered & threatened species, habitat, and cultural resources.	•	Increased springflow and reduced streamflow below Lake Dunlap.	•	Not applicable.	<u> • </u>	Downstream interests keenly opposed to this management strategy.
Colorado River @ Columbus - LCRA Irrigation & Stored Water (C-17A)	120,000 Max 80,000 in 2050	Firm	\$622	•	Concerns with endangered & threatened species, habitat, cultural resources, and TWD Ecologically Unique Stream Segments.		Reductions in freshwater inflows to Matagorda Bay associated with greater utilization of existing water rights.	•	Minimal	•	Encourages beneficial use of available rights and existing reservoirs.
Canyon Reservoir – River Diversion (G-15C)	15,000	Firm	\$450	•	Minimal. Canyon Reservoir is an existin resource.	•	Increased instream flows associated with downstream deliveries of water supply.	•	Not applicable.	:	Encourages beneficial use of existing reservoir. Recreational Benefits with downstream delivery.
Canyon Reservoir - Wimberley & Woodcreek (G-24)	1,048	Firm	\$1,586	•	Minimal. Pipeline could encounter endantered or threatened species habitat.	•	Minimal, if any.	•	Not applicable.	•	Encourages beneficial use of existing reservoir.
Carrizo Aquifer – Wilson & Gonzales (CZ-10C) ⁵	75,000	Firm	\$653	•	Minimal. Pipeline could encounter cultur l resource sites.		Long-term reductions in well levels. Some reductions in instream flow at outcrop. Potential effects on discharge of small springs.	•	Minimal, if any.	•	Planned withdrawals in excess of that expressed in policies of underground water conservation districts.
Carrizo Aquifer – Gonzales & Bastrop (CZ-10D) ⁵	90,000	Firm	\$516	•	Minimal. Pipeline could encounter cultur resource sites.	•	Long-term reductions in aquifer levels. Some reductions in instream flow at outcrop. Potential effects on discharge of small springs.	•	Minimal, if any.	•	Planned withdrawals in excess of that expressed in policies of underground water conservation districts.
Carrizo Aquifer - Local Supply (SCTN-2a)	14,700	Firm	\$386	•	Minimal, if any.	<u> </u>	Modest long-term reductions in aquifer levels.	•	Minimal, if any.		
SAWS Recycled Water Program (SAWS)	52,215	Firm	\$395	•	None. Water supply derived from increard volumes of treated wastewater.	•		•	Not applicable.	•	Encourages beneficial use of available resource.
Purchase of Water From Major Provider (PMP)	8,000	Firm	\$877	•	Minimal, if any. Supply developed as pa of other water management strategies.	•.	Minimal, if any.	.•	Not applicable.		
Aquifer Storage & Recovery (ASR) - (SCTN-1a)	Unquantified	Firm	Unquantified	•	Minimal. Pipeline could encounter important habitat or encounter cultural resource site:	•	Reduced peak summer pumpage from Edwards Aquifer increases aquifer levels and springflow.	•	Not applicable.	•	SAWS South Bexar County ASR presently in implementation phase.
Brush Management (SCTN-4)	Unquantified	Unknown	Unquantified	•	Concerns regarding endangered & threate ed species, vegetation & wildlife habitat, and cultural resources.	•	Potential benefit to Edwards Aquifer due to increased water for recharge.	•	Potential improvement of pasture for grazing.	•	Additional studies needed to determine quantity of dependable supply during drought
Weather Modification (SCTN-5)	Unquantified	Unknown	Unquantified	•	Potential increases in water supply for willife habitat.	•	Potential increases in rainfall, runoff, and aquifer recharge.	•	Provides water for irrigated and dry-land agriculture (crops & ranching).	•	Concerns regarding increased flood potential.
Rainwater Harvesting (SCTN-9)	Unquantified	Unknown	Unquantified	•	Minimal, if any.	<u> </u>	Minimal, if any.	1.	Not applicable.	•	Consistent with conservation focus of Plan.
Small Aquifer Recharge Dams	Unquantified	Unknown	Unquantified	•	Small potential effects on habitat.	•	Potential increases in local aquifer levels.	•	Minimal, if any.		
Total of New Supplies	525,237		-				-				

South Central Texas Region, EREPA Alternative - TWDB Evaluation Criteria Summary (Continued)

Management Strategy	Comparison of Strategies to Meet Needs	Interbasin Transfer Issues	Third-Party Impacts of Voluntary Transfers	Regional Efficiency	Effect on Navigation
Municipal Demand Reduction (Conservation) (L-10 Mun.)	Low unit cost. Inherent environmental benefits.	Not applicable.	Not applicable.	Implementable throughout the region.	None
Edwards Irrigation Transfers (L-15)	Low unit cost	Not applicable.	Maximum transfer may have potential socio- economic impacts to third parties.	Requires no new facilities.	• None
Edwards Recharge - Type 2 Projects (L-18c)	Low unit cost	Not applicable.	Not applicable.	Requires no new transmission and treatment facilities.	• None
Medina Lake Recharge Enhancement (S-13B)	Low unit cost.	Not applicable.	Potentially significant impacts due to reduced irrigation from the BMA Canal System.	Requires no new facilities.	• None
Edwards Recharge – Guadalupe River Diversions (SCTN-6a)	Low to moderate unit cost.	TNRCC Interbasin Transfer permit required	Not applicable.	Provides for recovery and recirculation of enhanced springflow from Edwards Recharge – Type 2 Projects (L-18c).	• None
Colorado River @ Columbus – LCRA Irrigation & Stored Water (C-17A)	Moderate unit cost.	TNRCC Interbasin Transfer permit required.	Minimal. Water rights presently underutilized.	 Shared pipeline alignment with other strategies. Shared water treatment and balancing storage facilities in Guadalupe County. 	• None
Canyon Reservoir - River Diversion (G-15C)	Low unit cost.	Not applicable.	Not applicable.	 Additional surface water supply without construction of a new reservoir. Shared pipeline alignment with other strategies. Shared water treatment and balancing storage facilities in Guadalupe County. 	• None
Canyon Reservoir - Wimberley & Woodcreek (G-24)	High unit cost, but options to meet needs are limited.	Not applicable.	Not applicable.	Additional surface water supply without construction of a new reservoir.	• None
Carrizo Aquifer – Wilson & Gonzales (CZ-10C) ⁵	Moderate unit cost.	Not applicable.	Transfer rate could have potential socio- economic impacts to third parties.	New supply proximate to Bexar County.	• None
Carrizo Aquifer – Gonzales & Bastrop (CZ-10D) ⁵	Low to moderate unit cost.	Not applicable.	Transfer rate could have potential socio- economic impacts to third parties.	Shared pipeline alignment with other strategies. Shared water treatment and balancing storage facilities in Guadalupe County.	• None
Carrizo Aquifer - Local Supply (SCTN-2a)	Moderate cost.	Not applicable.	Not applicable.	New supply proximate to points of need.	None
SAWS Recycled Water Program (SAWS)	Low to moderate cost.	Not applicable.	Not applicable.	New supply proximate to points of need.	• None
Purchase of Water From Major Provider (PMP)	Low to moderate cost.	Not applicable.	Not applicable.		None
Aquifer Storage & Recovery (ASR) – (SCTN-1a)	Effective means of reducing peak summer pumpage from the Edwards Aquifer.	Not applicable.	Not applicable.	Increases reliability of current supply from the Edwards Aquifer.	• None
Brush Management (SCTN-4)	Insufficient information at this time.	Not applicable.	Not applicable.	May contribute positively to storage and system management of supplies.	• None
Weather Modification (SCTN-5)	Potentially feasible management strategy to meet a portion of projected irrigation needs.	Not applicable.	Not applicable.	May contribute positively to storage and system management of supplies.	• None
Rainwater Harvesting (SCTN-9)	High unit cost; comparable to a domestic well.	Not applicable.	Not applicable.	Implementable throughout the region.	None
Small Aquifer Recharge Dams	High unit cost.	Not applicable.	Not applicable.	Implementable throughout the region.	None

of underground water conservation districts.

Notes:

1) Quantity based on full implementation and utilization of new supplies in year 2050.

2) Firm reliability indicates that new supply is dependable in a drought of record with full implementation of the Alternative Plan.

3) Unit cost based on full utilization of supply at ultimate capacity of planned facilities and includes treatment and distribution facilities necessary to meet peak daily needs.

4) Management strategies in the implementation phase include Schertz-Seguin Water Supply Project, Western Canyon Regional Water Supply Project, Lake Dunlap WTP Expansion and Mid-Cities Project, and GBRA Canyon Reservoir Contract Renewals. Supplies associated with these management strategies were counted as current supply in the technical evaluation of alternative regional water plans.

5) Subsequent to the technical evaluation of alternative regional water plans, quantity associated with this management strategy was limited in the Regional Water Plan in viel of policies associated with this management strategy was limited in the Regional Water Plan in viel of policies

4-9

EREPA Alternative Regional Water Plan Annual Cost of Cumulative Additional Water Supply

EREPA Alternative Regional Water Plan Atascosa County

South Co	entral Texas Region	- ::					С	ounty = A	tascosa
	ummary of Projected Water Needs (Shortages	and Water N	/lanageme	nt Strateg	ies			User Gro	
Projected	Water Needs (acft/yr)						-		
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		325	366	401	468	530	587	
	Industrial		0	0	0	0	0	0	
	Steam-Electric		0	0	0	0	1,504	8,504	-
	Mining		0	0	0	995	1,109	1,239	
	Irrigation		38,418	36,718	35,170	43,726	42,190	40,713	
	Total Needs		38,743	37,084	35,571	45,189	45,333	51,043	
	Mun, Ind, S-E, & Min Needs		325	366	401	1,463		10,330	
	Irrigation Needs		38,418			43,726		40,713	
	nagement Strategies (acft/yr)	Candidate			ļ .				
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		356	384	411	259	300	319	
L-15	Edwards Irrigation Transfers	81,000	500	500	500	500	700	700	2, 3,
SCTN-2a	Carrizo Aquifer - Local Supply					1,000	3,000	10,000	5,
								·	
				-					
SCTN-4	Brush Management							-	
SCTN-5	Weather Modification			·					
SCTN-9	Rainwater Harvesting								
3 - 1, 1 -	Small Aquiler Recharge Dams							***	-
L-10 (lm.)	Demand Reduction (Conservation)		3,962	3,962	3,962	3,962	3,962	3,962	***************************************
	Total New Supplies		4,818	4,846		5,721	7,962	14,981	
	Total System Mgmt. Supply / Deficit		-33,925	-32,238	-30,698	-39,468	-37,371	-36,082	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		531	518		296	857	689	
	Irrigation System Mgmt. Supply / Deficit		-34,456	-32,756	-31,208	-39,764	-38,228	-36,751	
Mater									
Notes:	Candidate New Supplies shown for year 2000 are identified	for oriority impleme	entation but w	dil not be ave	ilahia immedia	laly			
	Demand Reduction (Conservation) strategies assumed large				I DOOL HILLINGOID				
2	Candidate New Supply to be shared among Uvalde, Medina				not be reliable	in drought			
3	Pursuant to draft EAA Critical Period Management rules. Ca								
-	the estimated maximum potential annual transfer (95,430 ac								
4	Additional Edwards supply is for City of Lytle.				1				
5	Additional Carrizo supply is for Steam-Electric and M	lining use.						-	
6	Early implementation of facilities assumed in cost es		e sufficient	supply durin	a drought				
	Option expected to provide additional water supply in many					nuantified		٠	
<u>, </u>	Estimates based upon use of LEPA systems on 50 percent						annlication re	10	
	Transmiss esses oben one or ret v stateme on on benegit (or annual militate			·· or an porcer	a or impanon	The state of the s		

EREPA Alternative Regional Water Plan Bexar County

mary of Projected Water Needs (Shortages) and ater Needs (acft/yr)	Water Manage	ment Strate	ales				Hone Can	
ator Neode (arfflur)							User Gro	nb(s) =
			ì			Í		
User Group(s)		2000	2010	2020	2030	2040	2050	Note
		122,867	154,495	196,301	262,070	315,633	353,309	- 11010
							8 192	
			- ŏ l		- 1,100			
			4.936		5.408			
	i						17,368	
							367.463	
	Candidate	,-,-,	50,011,	,	10,010	,	,	
		2000*	2010	2020	2030	2040	2050	No
Edwards Irringlion Transfers	81.000		55,000		85 057	70,000	71 300	
Edwards Recharge - Type 2 Projects			13 451	13 451	13 451		13 451	
		0,40.1	113 000		70,000		23,000	
SAWS Recycled Water Program			19,826	26,737	35.824		52 215	
	145,000						90.000	4, 9,
					8,136		8,136	
							42,121	
Aquifer Storage & Recovery - Regional								
			T t		1			
Weather Modification								
Demand Reduction (Conservation)		4,521	4,521	4,521	4,521	4,521	4,521	
		176,500	323,307	342,555	370,586	413.624	420,678	
								-
	unniu / Doffelt							
							40,034	
irrigation System maint, Supply / Delicit		-10,034	-10,000	-10,004	-14,454	-13,004	-12,041	
		1	j			1		
Candidate New Supplies shown for year 2000 are k	dentified for prio	rity impleme	ntation, but	will not be	<u>avallable im</u>	mediately.		
Demand Reduction (Conservation) strategies assur	ned largely refle	cted in proje	cted water	<u>demands.</u>				
Candidate New Supply to be shared among Uvalde	, Medina, Atasc	osa, and Be	xar Countie	s. Supply n	nay not be r	<u>eliable in de</u>	ought	
Pursuant to draft EAA Critical Period Management	rules, Candidate	New Suppl	<u>y</u> represent	s approxima	ately 85 per	cent of the		
estimated maximum potential annual transfer (95,43	30 actt) based o	n Proposed	Permis pro	rated to 40	U,UUU actuy	r.		
	5,430 acm) base	a on Propo	sed Permits	prorated to	400,000 80	:tt/yr.		
		1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	(a) (a)	180 V61	4000000	10 00 Va 20		
					aecteastud	to bu Kaciy	Yr.	
Candidate New Supply to be shared among Bexar,	Comai, Guadali	ipe, and Ha	Az Conunes		-tod			
							,I	
ruture use of recycled water for non-potable uses a	na casea on go	ai oi meeun	20 percen	CWAC 10 I	projectes W	eres gemand	<u>. </u>	
Portion of ZZU, UUU activyr considered under CZ-10D	IN CONZEIES &	AANSON COM	ines which	IR LIDI IUCIN	180 IN CZ-1	<i>7</i> 0.		
SALIO ACRUST ITOM GONZAIES AND BASITOP COUNTIES	Dy 2040.	al Education	A suides sus	ahi and cod			lamanda.	
SAVVS ASK Program in Southern Bexar County Incr	eases renability	or cowards	wdmiet gnb	ply and red	uces seaso	iai aquier c	Kad	
Option expected to provide additional water supply	in many years, t	ou asbayas	DIE SUPPLY C	ming arous	alles et 44	iny unquant	meo.	lastia-
	Candidate New Supplies shown for year 2000 are in Demand Reduction (Conservation) strategies assurt and date New Supply to be shared among Uvalde Pursuant to draft EAA Critical Period Management estimated maximum potential annual transfer (95,4) the estimated maximum potential annual t	Industrial Steam-Electric Mining Irrigation Mun, Ind, S-E, & Min Needs Irrigation New Supply Description Demand Reduction (Conservation) Edwards Irrigation Transfers Edwards Irrigation Transfers Edwards Recharge - Type 2 Projects Colorado R LCRA Irrigation & Stored SAWS Recycled Water Program Carrizo Aquifer - Gonzales & Bastrop Adulfer - Gonzales & Bastrop 145,000 SAWS Recycled Water Program Carrizo Aquifer - Gonzales & Bastrop Edwards Recharge - Guad. R. Div. Aquifer Storage & Recovery - Regional Brush Management Weather Modification Weather Modification Weather Modification Weather Harvesting Small Aquifer Recharge Dams Demand Reduction (Conservation) Total System Mgmt. Supply / Deficti Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit Irrigation System Mgmt. Supply / Deficit Candidate New Supplies shown for year 2000 are identified for prio Demand Reduction (Conservation) strategies assumed largely refle Candidate New Supply to be shared among Uvalde, Medina, Atasc Pursuant to draft EAA Critical Period Management rules, Candidate estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potential annual transfer (95,430 acft) based on the estimated maximum potenti	Industrial Steam-Electric Mining Steam-Electric Mining A983 Irrigation Total Needs Isolates Irrigation Total Needs Irrigation New Supply Irrigation Needs Irrigation New Supply Irrigation Needs Irrigation Nee	Industrial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Industrial	Industrial	Industrial	Industrial 0 0 0 1,430 4,759 6,192

EREPA Alternative Regional Water Plan Caldwell County

South Ce	ntral Texas Region							ounty =	
County St	ummary of Projected Water Needs (Shortages	and Water N	Manageme	ent Strateg	ies			User Grou	p(s) = al
Declaried	Mater Needs (softler)								
Projected	Water Needs (acft/yr)		2000						
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0		393	668	714	737	
	Industrial		. 0	0	0	0	0	0	
	Steam-Electric		0		0	. 0	0	0	
	Mining		0		0	0	0	0	
	Irrigation		0		0	0	0	0	
	Total Needs		0	188	393	668	714		
	Mun, Ind, S-E, & Min Needs		0	188	393	668	714	737	
	Irrigation Needs		0	0	0	0	Ō	0	
Water Mar	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		195	206	218	82	93	104	
SCTN-2a	Carrizo Aquifer - Local Supply			500	500	1,000	1,000	1.000	2
	_								
				ll					
	Small Aquifer Recharge Dams								
L-10 (ln.)	Demand Reduction (Conservation)								
	Total New Supplies		195	706	718	1,082	1,093	1,104	
	Total System Mgmt. Supply / Deficit		195		325	414	379	367	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		195	518	325	414	379	367	
	Irrigation System Mgmt. Supply / Deficit		Ō	0	0	Ö	. 0	0	
	Y								
Notes:									
1	Demand Reduction (Conservation) strategies assumed large	ly reflected in proj	ected water d	emands.					
2	Additional well(s) for Lockhart.								
3	Option expected to provide additional water supply in many	years, but dependa	able supply du	ging drought is	s presently un	quantified.			

EREPA Alternative Regional Water Plan Comal County

South C	entral Texas Region							County	= Coma
County S	Summary of Projected Water Needs (Shortage	s) and Water N	lanageme	nt Strateg	ies			User Gro	
Projecte	d Water Needs (acft/yr)					į			
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,289	5,049	10,487	18,282	25,205	33,062	
	Industrial		1,388	1,425	1,486	1,737	2,009	2,289	
	Steam-Electric		0	0	0	0	0	0	
	Mining		5,570	5,464	5,628	5,796	3,590	2,224	
	Irrigation		30	14	0	0	0	0	
	Total Needs		9,277	11,952	17,601	25,815	30,804	37,575	
	Mun, Ind, S-E, & Min Needs		9,247	11,938	17,601	25,815	30,804	37,575	
	Irrigation Needs		30	14	0	0	0	0.,,,,,	
									هين المراجع
Water M	anagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		616	718	848	718	824	942	
G-15C	Canyon Reservoir - River Diversion	15,000	10,000	10.000		10.000	10,000	10,000	2,
C-17A	Colorado R LCRA Irrigation & Stored	125,000		3,000	9,000	17,000	22,000	29,000	4, 5,
								30,000	- 101
						<u> </u>			
					_				
	Small Aquifer Recharge Dams								
L-10 (frr.)	Demand Reduction (Conservation)								
	Total New Supplies		10,616	13,718	19,848	27,718	32,824	39,942	
	Total System Mgmt. Supply / Deficit		1,339	1,766	2,247	1,903	2,020	2.367	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		1.369	1,780	2,247	1,903	2,020	2,367	
	Irrigation System Mgmt. Supply / Deficit		-30	-14	0	0	0	0	
						_			
Notes:									
•	Candidate New Supplies shown for year 2000 are identified	for priority impleme	ntation, but m	nav not be av	ailable immedi	ately.			
1	Demand Reduction (Conservation) strategies assumed large								
2	Portion of Canyon firm yield (with amendment) diverted belo		. 1						
3	Candidate New Supply shared among Comal, Guadatupe, a	nd Hays Counties.							
4	Supply dependent upon future water needs in Region K and	/or interbasin transf	er issues (12	0 Kacftlyr dec	reasing to 80	Kacft/yr).			
5	Candidate New Supply to be shared among Bexar, Comal,	<u>Guadalupe, and Ha</u>	ys Counties.						
6	Early implementation of facilities assumed in cost estimation	to ensure sufficien	t supply durin						
7	Option expected to provide additional water supply in many	vears, but dependa	ble supply du	rina drought i	s presentiv un	guantified.			

EREPA Alternative Regional Water Plan Dimmit County

South C	entral Texas Region						(County =	Dimmit
County S	ummary of Projected Water Needs (Shorta	ges) and Wat	er Manag	ement Str	ategies		<u> </u>	ser Grou	p(s) = al
Projected	Water Needs (acft/yr)	_							
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal	-	138	405	649	1,054	1,479	1,959	110103
	Industrial		130	403	0	1,0541	0	1,535	·
	Steam-Electric		ŏ	ŏ	ŏ	ő	ől	ŏ	
	Mining		- ŏl	ōl	Ö	915	925	949	
	trrigation		0	ō	0	2,133	1,737	1,331	
	Total Needs		138	405	649	4,102	4,141	4,239	
	Mun, Ind, S-E, & Min Needs		138	405	649	1,969	2,404	2,908	
	Irrigation Needs		0	0	0	2,133	1,737	1,331	
	,			Ū	•	2,000	1,000	1,001	
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mนก.)	Demand Reduction (Conservation)		131	144	156	104	118	133	
SCTN-2a	Carrizo Aquifer - Local Supply		500	1,000	1,000	2,500	3,000	3,500	2,
	<u> </u>								
									
	<u> </u>								
SCTN-4	Brush Management								
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting						•		
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)								
•	Total New Supplies		631	1,144	1,156	2,604	3,118	3,633	
			400	===		4.400	4 000		
	Total System Mgmt. Supply / Deficit		493	739	507	-1,498	-1,023	-606	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		493	739	507	635	714	725	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	-2,133	-1,737	-1,331	
Notes:									
•	Candidate New Supplies shown for year 2000 are identifi				available im	mediately.		1	
1	Demand Reduction (Conservation) strategies assumed to	rgely reflected in	projected wat	ler demands.					
2	Additional well(s) for Carrizo Springs and Mining supply.								
3	Early Implementation of facilities assumed in cost estimate					I			
4	Option expected to provide additional water supply in ma	ny years, but depe	endable supp	ly during drou	ight is preser	tly unquantif	ied.		

EREPA Alternative Regional Water Plan Frio County

South Ce	entral Texas Region							Coun	ty = Frio
	ummary of Projected Water Needs (Shortage	es) and Water	Managen	ent Strate	gles			User Grou	
					_				
Projected V	Nater Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0	0	0	0	0	0	_
	Industrial		0	0	0	0	0	0	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	0	0	0	0	0	
	Irrigation	!	71,126	67,646	64,365	76,505	73,519	70,662	
	Total Needs		71,126	67,646	64,365	76,505	73,519	70,662	
	Mun, Ind, S-E, & Min Needs		0	0	0	0	Ō	0	
	Irrigation Needs		71,126	67,646	64,365	76,505	73,519	70,662	
	11118 411011 1100 420		1 1,100	0.10.0	0.1,000	10,000	10,010	70,002	
Water Mai	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		184	195	205	116	121	124	1
<u> </u>	Dollars 1.0000001 (Sanisal Adrian)								

SCTN-4	Brush Management					•			2
SCTN-5	Weather Modification					**			2
SCTN-9	Rainwater Harvesting		l						2
	Small Aquifer Recharge Dams								2
L-10 (frr.)	Demand Reduction (Conservation)		5,947	5,947	5,947	5,947	5,947	5,947	3
	Total New Supplies		6,131	6,142	6,152	6,063	6,088	6,071	
	Total System Mgmt. Supply / Deficit		-64,995	-61,504	-58,213	-70,442	-67,451	-64,591	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		184	195	205	116	121	124	
	Deficit				200	ا"نا	'-'	127	
			05.470	64 600		70 550	67.570		
	Irrigation System Mgmt. Supply / Deficit		-65,179	-61,699	-58,418	-70,558	-67,572	-64,715	
Notes:	,								
1	Demand Reduction (Conservation) strategies assumed lar	nety reflected in re	mierted water	damande					
2	Option expected to provide additional water supply in many				nt is presently	unnuanified			
2	Estimates based upon use of LEPA systems on 50 percen								
<u> </u>	application rate.	o accessos illiga	2104 BI 1007, 1	THE COURSE VE	USI 21 20 PSI	cent or migat			
	Jappiication iata.	L	L					<u>-</u>	

EREPA Alternative Regional Water Plan Guadalupe County

South C	entral Texas Region						Cou	nty = Gu	adalupe
County S	ummary of Projected Water Needs (Shortag	es) and Water	Managen	nent Strat	egies			Jser Grou	p(s) = al
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		29	23	30	71	87	773	
	Industrial		985	1,204	1,350	1,487	1,692	1,899	
	Steam-Electric		0	0	0	0	Ō	0	
	Mining		198	198	200	202	207	213	
	Irrigation		985	879	779	684	594	508	
	Total Needs		2,195	2,304	2,359	2,444	2,580	3,393	
	Mun, Ind, S-E, & Min Needs		1,210	1,425	1,580	1,760	1,986	2,885	
	Irrigation Needs		985	879	779	684	594	508	
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		235	236	236	5	5	- 6	
G-15C	Canyon Reservoir - River Diversion	15,000	1,500	1,500	1,500	1,500	1,500	1,500	2,
C-17A	Colorado R LCRA Irrigation & Stored	125,000			500	500	1,000	3,000	4, 5, (
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)	 -							
	Total New Supplies		1,735	1,736	2,236	2,005	2,505	4,506	
	Total System Mgmt. Supply / Deficit	4	-460	-568	-123	-439	-75	1,113	· , · · · · ·
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		525	311	656	245	519	1,621	
	Irrigation System Mgmt. Supply / Deficit		-985	-879	-779	-684	-594	-508	
Notes:									
	Candidate New Supplies shown for year 2000 are identified	d for priority implen	nentalion, but	t will not be a	vailable imme	diately.			
1	Demand Reduction (Conservation) strategies assumed large						I		
2	Portion of Canyon firm yield (with amendment) diverted be	low Seguin.							
3	Candidate New Supply shared among Comal, Guadalupe,	and Hays Counties	Б						
4	Supply dependent upon future water needs in Region K an	d/or interbasin tran	sfer issues (120 Kacft/yr d	ecreasing to	80 Kacftyr).			
5	Candidate New Supply to be shared among Bexar, Comal,	Guadalupe, and I-	lays Counties	5.					
6	Early implementation of facilities assumed in cost estimation							I	
7	Option expected to provide additional water supply in many	years, but depend	dable supply	during drougt	t is presently	unquantified	<u> </u>		

EREPA Alternative Regional Water Plan Hays County

South C	entral Texas Region								y = Hays
County S	ummary of Projected Water Needs (Shortage	es) and Water	Managen	nent Strat	egles			User Grou	ıp(s) = al
Proiected	i Water Needs (acft/yr)								
	User Group(s)		2000*	2010	2020	2030	2040	2050	Notes
	Municipal		4,325	7,609	10,980	16,349	22,696	29,059	
	Industrial		0	0	0	O	0	0	
	Steam-Electric		0	0	0	0	0	0	
	Mining		84	82	68	55	37	28	
	Irrigation		0	0	0	0	0	0	
	Total Needs		4,409	7,691	11,048	16,404	22,733	29,087	<u> </u>
	Mun, Ind, S-E, & Min Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Irrigation Needs		0	0	0	0	0	0	
Water Ma	nnagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)	new cuppiy	647	747	873	699	906	1,174	
G-15C	Canyon Reservoir - River Diversion	15,000	3500	3500	3500	3500	3500	3500	
G-130 G-24	Canyon Reservoir	1,048	1,048	1,048	1,048	1,048	1,048	1,048	
C-17A	Colorado R LCRA Irrigation & Stored	125,000		4,000	7,000	12,500	19,000	25,000	
L-10 (lrr.)	Small Aquiler Recharge Dams Demand Reduction (Conservation)								
	Total New Supplies		5,195	9,295	12,421	17,747	24,454	30,722	
	Total System Mgmt. Supply / Deficit		786	1,604	1,373	1,343	1,721	1,635	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		786	1,604		1,343	1,721	1,635	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	
Notes:			ì				i		
MOTAR:	Candidate New Supplies shown for year 2000 are identified	d for priority imple	mentation but	t will not be a	vailahle immo	diately			
1	Demand Reduction (Conservation) strategies assumed lan				TONGONG HILLING	watery.			
2	Portion of Canyon firm yield (with amendment) diverted be		-,-5.55						
3	Candidate New Supply shared among Comal, Guadalupe,	and Hays Countie	s.						
4	Candidate New Supply for Wimberley and Woodcreek.			· · · · · - · · · ·					
5	Supply dependent upon future water needs in Region K an	d/or interbasin tra	nsfer Issues (120 Kacft/yr	decreasing to	80 Kacftyr).			
6	Candidate New Supply to be shared among Bexar, Comal,	Guadalupe, and I	lays Counties	3.		T			
7	Early implementation of facilities assumed in cost estimation	on to ensure suffici	ent supply du	ring drought.					
8	Option expected to provide additional water supply in many	y years, bul depen	dable supply	during droug	ht is presently	unquantified.			

EREPA Alternative Regional Water Plan Kendall County

South Co	entral Texas Region				····		C	ounty =	Kendal
County S	ummary of Projected Water Needs (Shorta	ges) and Wat	er Manage	ement Str	ategles			ser Grou	
Projected !	Water Needs (acft/yr)						·		
riojecieu	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		1.070	1,560	2,808	4,099	5,578	7.518	140(68
	Industrial		1,070	1,560	2,800 A	4,099	<u> </u>	6	·
	Steam-Electric		- 6		- 7		0	0	
	Mining		- öl	<u>ŏ</u> l	ŏ		ő	<u>_</u>	
	Irrigation		ŏ	<u>ō</u>	- ŏ	ő	- ol	ŏ	
	Total Needs		1,072	1.563	2,812	4,103	5.583	7.524	
:	Mun, Ind, S-E, & Min Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Irrigation Needs		0	- 1,555 0	- 2,0.2	4,100	0,555	0	
	III I gaudii Needs		U	- 0	U	- 0	U,		
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		67	71	71	11	11	11	
	Purchase Water from Major Provider		2,000	2,000	3,000	5,000	6,000	8,000	2,
SCTN-4	Brush Management								
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
	Small Aquifer Recharge Dams								•
L-10 (lm.)	Demand Reduction (Conservation)							,	
	Total New Supplies		2,067	2,071	3,071	5,011	6,011	8,011	
			005	500	050	000	400	407	
	Total System Mgmt. Supply / Deficit		995	508	259	908	428	487	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		995	508	259	908	428	487	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	
Notes:									
	Candidate New Supplies shown for year 2000 are identifi	ed for priority impl	ementation, b	out will not be	available im:	mediately.			
1	Demand Reduction (Conservation) strategies assumed la	rgely reflected in	projected wat	er demands.	I				
2	Assumed purchase from Bexar County major provider. K					ınty table.	[
3	Early implementation of facilities assumed in cost estimat	ion to ensure suff	icient supply o	fguorb gairub	nt.				
}	Option expected to provide additional water supply in ma	ny years, but depo	endable suppl	y during drou	ight is presen	tly unquantif	ied.		

EREPA Alternative Regional Water Plan Medina County

South Co	entral Texas Region							County =	Medina
County S	ummary of Projected Water Needs (Shortage	es) and Water	Managem	ent Strate	egies			User Grou	ıp(s) = all
Prolocted	l Water Needs (acft/yr)								
Projected			2000	2010	- 2020	2020	2040	2050	Madaa
	User Group(s)				2020	2030	2040	2050	Notes
	Municipal		2,015	2,110	2,206	2,427	2,582	2,750	
	Industrial Steam-Electric		0	0	0	0	<u>0</u>	0	
	Mining		68	68	70	72	74	76	
	Irrigation		98,916	95,268	91,320	92,320	88,925	84,692	
	Total Needs		100,999	97,446	93,596	94,819	91,581	87,518	
	Mun, Ind, S-E, & Min Needs		2,083	2,178	2,276	2,499	2,656	2,826	
	Irrigation Needs		98,916	95,268		92,320	88,925		
	milgation needs		30,310	93,200	91,320	82,320	00,923	04,082	
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		200	205	211	73	76	78	1
L-15	Edwards Irrigation Transfers	81,000	3,000	3,000	3,000	3,000	3,000	3,000	2, 3
						·			-
					····				
SCTN-4	Brush Management			<u>-</u>					4
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								4
	Small Aquifer Recharge Dams					i			4
L-10 (lm.)	Demand Reduction (Conservation)		11,887	11,867	11,867	11,867	11,867	11,867	5
	Total New Supplies		15,067	15,072	15,078	14,940	14,943	14,945	
	T. 10		05.000	00.074	70 540	TO 070	50.000		
	Total System Mgmt. Supply / Deficit		-85,932	-82,374	-78, <u>518</u>	-79,879	-76,638	-72,573	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		1,117	1,027	935	574	420	252	
	Irrigation System Mgmt. Supply / Deficit		-87,049	-83,401	-79,453	-80,453	-77,058	-72,825	
							,		
Notes:		<u>. </u>							
<u>-</u>	Candidate New Supplies shown for year 2000 are identified Demand Reduction (Conservation) strategies assumed land				<u>vallabie imme</u>	diately.			
2	Candidate New Supply to be shared among Uvalde, Medin				ay not be relia	hle in draugh	,		
3	Pursuant to draft EAA Critical Period Management rules, C						<u>"</u>		
	the estimated maximum potential annual transfer (95,430 c								
4	Option expected to provide additional water supply in many								
5	Estimates based upon use of LEPA systems on 80 percen								
	application rate, but applicable to only 50 percent of Edwar	rds Aquifer irrigatio	n permitted qu	vantities.					

EREPA Alternative Regional Water Plan Uvalde County

South C	entral Texas Region							County =	Uvalde
County S	summary of Projected Water Needs (Shortage	ges) and Wate	er Manage	ment Str	ategies			Jser Grou	
Projected	d Water Needs (acft/yr)	<u> </u>							
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
-	Municipal		2,682	3,166	3,493	4,241	4,880	5,609	
	Industrial		0	.0	. 0	0	0	0	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	0	0	0	0	0	
	Irrigation		75,263	72,798	70,154	71,022	68,880	65,676	
	Total Needs		77,945	75,984	73,647	75,263	73,760	71,285	
	Mun, Ind, S-E, & Min Needs		2,682	3,166	3,493	4,241	4,880	5,609	
	Irrigation Needs		75,263	72,798	70,154	71,022	68,880	65,676	
Water Ma	anagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		318	346	371	235	258	283	110100
L-15	Edwards Irrigation Transfers	81,000	3,000	4,000	4,000	5,000	5,000	6,000	2, 3, 4
				.,,===					
SCTN-4	Brush Management								5
SCTN-5	Weather Modification								5
SCTN-9	Rainwater Harvesting				l				5
	Small Aquifer Recharge Dams]		5
L-10 (lm.)	Demand Reduction (Conservation)		14,143	14,143	14,143	14,143	14,143	14,143	6
	Total New Supplies		17,461	18,489	18,514	19,378	19,401	20,426	
	Total System Mgmt. Supply / Deficit		-60,484	-57,475	-55,133	-55,885	-54,359	-50,859	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		636	1,180	878	994	378	674	
	Irrigation System Mgmt. Supply / Deficit		-61,120	-58,655	-56,011	-56,879	-54,737	-51,533	•
Notes:		[•	
•	Candidate New Supplies shown for year 2000 are identifi	ied for priority impl	ementation, b	out will not be	available im	mediately.			
1	Demand Reduction (Conservation) strategies assumed la				i				
2	Candidate New Supply to be shared among Uvalde, Med						ught.		
3	Pursuant to draft EAA Critical Period Management rules,	Candidate New S	upply represe	nts approxim	ately 85 perc	ent of	I		
	the estimated maximum potential annual transfer (95,430					fl/yr.			
4	Early Implementation of facilities assumed in cost estima								
5	Option expected to provide additional water supply in ma								
6	Estimates based upon use of LEPA systems on 80 perce				vation at 40 p	ercent of irri	gation	[
	application rate, but applicable to only 50 percent of Edw	ards Aquifer irrigat	ion permitted	quantities.	1				

EREPA Alternative Regional Water Plan Wilson County

	entral Texas Region							County =	
County S	ummary of Projected Water Needs (Shortag	es) and Wate	r Manager	nent Strat	egies			Jser Grou	p(s) = al
Projected \	Water Needs (acft/yr)				-				
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0	0	0	0	63	145	
	Industrial		0	0	0	Ō	0	Ō	
	Steam-Electric		0	0	0	Ö	0	0	
	Mining		0	0	0	0	0	0	
	Irrigation		Ö	0	0	0.	0	0	
	Total Needs		0	0	0	0	63	145	
	Mun, Ind, S-E, & Min Needs		Ō	0	0	Ö	63	145	
	Irrigation Needs		Ō	0	0	O	0	0	
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		171	183	194	114	122	130	
SCTN-2a	Carrizo Aquifer - Local Supply						200	200	_
			ļ. <u></u> .						
205114									
SCTN-4 SCTN-5	Brush Management Weather Modification					 			
SCTN-9	Rainwater Harvesting	· · · · · · · · · · · · · · · · · · ·							
20114-9	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)								
L 10 (M1.)	/ Total New Supplies		171	183	194	114	322	330	
	· Ittal Rew Cupplies		171	100	104	114	ŲZE,	550	
	Total System Mgmt. Supply / Deficit		171	183	194	114	259	185	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		171	183	194	114	259	185	
	Deficit	•	'''	103	194	1 177	239	.05	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	Ö	
Notes:	•					•			
1	Demand Reduction (Conservation) strategies assumed lan	gely reflected in pr	ojected water	demands.					
2	Additional well(s) for Floresville.								
3	Option expected to provide additional water supply in many	y years, but depen	idable supply	during droug	nt is presently	unquantified			

EREPA Alternative Regional Water Plan Zavala County

	entral Texas Region								
County S	ummary of Projected Water Needs (Shortage	es) and Water	r Manager	nent Strat	egies			User Grou	p(s) = al
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0	0	0	0	0	0	
	Industria!		0		ŏ	0	ŏ		•
	Steam-Electric		Ö		0	Ō	ō		
	Mining		0		0	0	0	ō	
	trrigation		80,722	76,589	72,655	88,293	84,673	81,200	
	Total Needs		80,722	76,589	72,655	88,293	84,673	81,200	
	Mun, Ind, S-E, & Min Needs		0	0	0	0	0	ō	
	Irrigation Needs		80,722	76,589	72,655	88,293	84,673	81,200	
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	0 0 0 0 81,200 81,200
L-10 (Mun.)	Demand Reduction (Conservation)	11011 Guppiy	190		194	90	103		110100
SCTN-4	Brush Management								
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)		6,401	6,401	6,401	6,401	6,401	6,401	3
	Total New Supplies		6,591	6,594	6,595	6,491	6,504	6,505	
	Total System Mgmt. Supply / Deficit		-74,131	-69,995	-66,060	-81,802	-78,169	-74,695	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		190	193	194	90	103		
	Irrigation System Mgmt. Supply / Deficit	•	-74,321	-70,188	-66,254	-81,892	-78,272	-74,799	
Notes:									
1.	Demand Reduction (Conservation) strategies assumed lar	nely reflected in pa	olected water	r demands.					
2	Option expected to provide additional water supply in many	v vears, but depen	dable supply	during drough	nt is presently	unquantified			
3	Estimates based upon use of LEPA systems on 50 percen								
	application rate.								

EREPA Alternative Regional Water Plan Simulated Comal Springs Discharge

EREPA Alternative Regional Water Plan Simulated San Marcos Springs Discharge

EREPA Alternative Regional Water Plan Simulated Edwards Aquifer Pumpage

EREPA Alternative Regional Water Plan Simulated Edwards Aquifer Levels

EREPA Alternative Regional Water Plan Additional Carrizo Groundwater Pumpage

Note: Drawdown is referenced to simulated 1994 aquifer levels and includes both projected local demands and development of water supply options in this alternative regional water plan.

Monitoring Well Location

EREPA Alternative Regional Water Plan Simulated Carrizo Aquifer Drawdown

EREPA Alternative Regional Water Plan - Carrizo Aquifer

EREPA Alternative Regional Water Plan — Carrizo Aquifer

EREPA Alternative Regional Water Plan Streamflow Comparisons

EREPA Alternative Regional Water Plan Streamflow Comparisons

EREPA Alternative Regional Water Plan Streamflow Frequency Comparisons

This Page Intentionally Blank

nic /	/ Reliabil	ity / Environmental / Public Acceptance (EREPA) Regional Water Manage	ment Al	emauve Plan			 		<u> </u>		
=i							Quantity of	Environmental	 	 	Time to
tion	Option No.	Water Supply Options	Type of	Water Supply Option	Type of Water Supply	Unit Cost (S/acft)	Water (zcft/yr)	Composite Average	Public Acceptability	Dellabillad	Implement
	NQ.	Treated Water Supply Options				(aracit)	(acity))	Average	Acceptability	Renzenty	(years)
	SCTN-17	Desalination of Brackish Groundwater Carrizo-Wilcox Aquifer between San Marcos, and Frio Rivers (75,000 activy)		rvation/Reuse/Exchange Other Aquifers	Treated Water Delivered Treated Water Distributed	56- 59-					
	CZ-10C CZ-10D	Camzo-Wilcox Aquiler between Colorado and Frio Rivers	Carrizo and	Other Aquiters	Treated Water Distributed	63	2 220,000	1.:			
	G-15C C-17A	Canyon Reservoir Water Released to Lake Notto - Treated Water to Distribution System or Recharge Zone Colorado River in Colorado County - Buy Stored Water and Imigation Rights; Firm Yield		ervoirs Ion with Storage	Treated Water Distributed Treated Water Distributed	67			1.0	0 1.0	0 1 10 5
	SCTN-3c	Simsboro Aquifer - Bastrop, Lee, and Milam Counties with Delivery to Major Municipal Demand Center	Carrizo and	Other Aquaters	Treated Water Distributed	70		1.0			
	G-16C1	Cuero Reservoir - Firm Yield	1: 0:00:00 ;	w Reservoirs Ion with Storage	Treated Water Distributed Treated Water Delivered	710		2.3	3 3.0	0 1.0	0 > 15
-	G-38C SCTN-16c	Guadatupe River Diversion at Gonzales to Mid-Cibes and/or Major Water Providers, with Regional Water Treatment Plant Lower Guadatupe River Diversions	River Divers	on with Storage	Treated Water Distributed	75	94,000				
	C-13C	Colorado River at Bastrop - Purchase of Stored Water - Firm Yield		ervoirs w Reservoirs	Treated Water Distributed Treated Water Distributed	769			3.0	0 1.0	5 to 15
	S-15Db S-15Da	Cibolo Reservoir with imported Water from the San Antonio and Guadalupe Rivers - Firm Yield Cibolo Reservoir with Imported Water from the San Antonio River - Firm Yield		w Reservoirs	Treated Water Distributed	773					
	SCTN-16b	Lower Guadatupe River Diversions		on with Storage w Reservoirs	Treated Water Distributed Treated Water Distributed	78		1.4	1.0	1.0	1 10 5
	S-16C G-17C1	Goliad Reservoir - Firm Yield Sandles Creek Reservoir - Firm Yield		# Reservoirs	Treated Water Distributed	856 865		2.4			
	SCTN-14b	Joint Development of Water Supply with Corpus Christi - Firm Yield		encirs	Treated Water Distributed	869	148.200	1.4	1.0	1,0	1 10 5
-	SCTN-16a SCTN-20c	Lower Guada'upe River Diversions Lower Colorado River Basin - Combined Diversion of Unused Irrigation Water Supplies and Unappropriated Streamflow		on with Storage on with Storage	Treated Water Distributed Treated Water Distributed	870 956					
	S-15Dc	Cibolo Reservoir with Imported Water from the San Antonio, Guadalupe, and Colorado Rivers - Firm Yield	Potential Na	w Reservoirs	Treated Water Distributed	965	106,482	2.3	3.0	1.0	5 to 15
	C-178 S-15Ea	Colorado River in Wharton County - Buy Irrigation Rights and Groundwater; Firm Yield Cibolo Reservoir with Imported Water from the Guadalupe River Sativater Barrier - Firm Yield	Potential Na	on with Storage w Reservoirs	Treated Water Distributed Treated Water Distributed	974 993		1.1		1.0	5 to 15
	SCTN-20b	Lower Colorado River Basin - Diversion of Unappropriated Streamflow	River Divers	on with Storage	Treated Water Distributed	1,003	57,037	1,6	2.0	1.0	
	SCTN-11 SCTN-14a	Purchase/Lease Surface Water Irrigation Rights for Municipal/Industrial Use Joint Development of Water Supply with Corpus Christi - Firm Yield		on with Storage ervoirs	Treated Water Delivered Treated Water Distributed	1,007		1.1		1.0	5 to 15
	B-10C	Allens Creek Reservoir - Firm Yield	Potential Ne	w Reservoirs	Treated Water Distributed	1,016	57,800	1.9	1.0		
	SCTN-20a SCTN-15	Lower Colorado River Basin - Water Sales Contract for Unused Impation Water Supplies Cummins Creek Off-Channel Reservoir (Colorado River Basin)		on with Storage w Reservoirs	Treated Water Distributed Treated Water Distributed	1,041		1.2		1.0	5 to 15
	S-15C	Cibolo Reservoir - Firm Yield	Potential No	# Reservoirs	Treated Water Distributed	1,131	33,200	1.8	3.0		
	C-18 SCTN-17	Shaws Bend Reservoir - Firm Yield (Colorado River Basin) Desalination of Seawater (100 MGD)		Reservoirs nation/Reuse/Exchange	Treated Water Distributed Treated Water Distributed	1,178		2.1 1.2			5 to 15
	S-15Eb	Cibolo Reservoir with Imported Water from the Guadalupe River Saltwater Barrier and the Colorado River near Bay City	Potential Ne	v Reservoirs	Treated Water Distributed	1,357	79,090	2,1			
	SCTN-17 SCTN-17	Desalination of Seawater (75 MGD) Desalination of Seawater (50 MGD)		Nation/Reuse/Exchange	Treated Water Distributed Treated Water Distributed	1,407 1,447		1.2	1.0	1.0	1 to 5
	G-24	Wimberley and Woodcreek Water Supply from Carryon Reservoir; 2030 Demands	Existing Re	prooirs	Treated Water Delivered	1,595		1.2			
	SCTN-17 S-140	Desalination of Seawater (25 MGD) Applicantite Reservoir - Firm Yield		Nation/Reuse/Exchange Reservoirs	Treated Water Distributed Treated Water Distributed	1,621		1.2	1.0	1.0	1 to 5
	3-140	Raw Water in Aquifer Water Supply Options	I OUGINGI IN	,	HOSION WALL DISCIDENCE	3,295	4,032	1.8	3.0	1.0	5 to 15
	S-138	Medina Lake - Existing Rights and Contracts with irrigation Use Reduction for Recharge Enhancement		der Recharge der Recharge	Raw Water in Aguiller	193		1.0			1 to 5
	L-18c SCTN-7a	Edwards Aquifer Recharge from Natural Drainage - Type 2 Projects (Program 2C) Wintergarden Carrizo Recharge Enhancement (Nueces River Alternative)		After Aquifers	Raw Water in Aquifer Raw Water in Aquifer	486 511		1.2 1.3	1.0		
	SCTN-6a	Edwards Aquifer Recharge Enhancement with Guadatupe River Diversions at Lake Duntap (SCTN-6a)		der Recharge Other Aquillers	Raw Water in Aquifer	534	42,121	1.2	1.0	1.0	5 to 15
	SCTN-7b L-11	Wintergarden Carrizo Recharge Enhancement (Atascosa River Atternative) Exchange Reclaimed Water for Edwards Impation Water		vation/Reuse/Exchange	Raw Water in Aquiter Raw Water in Aquiter	627 743		1.3			
	L-18b	Edwards Aquifer Recharge from Natural Drainage - Type 2 Projects (Program 2B)	Edwards At	der Recharge	Raw Water in Aquiter	800	15,980	1.8	1.0	1.0	
	L-18a SCTN-8	Edwards Aquifer Recharge from Natural Drainage - Type 2 Projects (Program 2A) Trinity Aquifer Optimization		ider Recharge Other Aquifers	Raw Water in Aquifer Raw Water in Aquifer	1,087 1,886	21,577 390	1,8 1,2	1.0		5 to 15
	SCTN-6b	Edwards Aquifer Recharge Enhancement with Guadatupe River Diversions near Gonzales (SCTN-6b)	Edwards At	der Recharge	Raw Water in Aquiter	1,941	51,133	1.3			
	G-30 L-17a	Guadatupe River Diversion near Comfort to Recharge Zone via Medina Lake Edwards Aquifer Recharge from Natural Drainage - Type 1 Projects (Program 1B)	100	der Recharge der Recharge	Raw Water in Aquiter Raw Water in Aquiter	2,079 2,557	3,902 1,958	1.4			
	L-17b	Edwards Aquiller Recharge from Natural Drainage - Type 1 Projects (Program 1A)	Edwards At	der Recharge	Raw Water in Aquifer	3,309	5,554	2.2	1.0 1.0		
	G-32	Diversion of Carryon Reservoir Flood Storage to Recharge Zone via Cibolo Creek - Long-Term Average Raw (Surface) Water Supply Options	Edwards At	fer Recharge	Raw Water in Aquifor	6,198	2.088	1,4			
	L-20	Transfer of SAWS Redained Water to Coleto Creek Reservoir (Exchange for CP&L Rights and GBRA Canyon Contract)		ration/Reuse/Exchange		79	17,000	1.3	1.0	1.0	1 50 5
	SCTN-3a G-20	Simsboro Aquifer - Bastrop, Lee, and Millam Counties with Delivery to Colorado River Gonzales Reservoir - Firm Yield		Ther Aquifers Reservoirs	Raw Water Delivered Raw Water at Reservoir	203 260	75,000	1.1	3,0	1.0	1 to 5
	SCTN-3b	Simsboro Aquifor - Bastrop, Lee, and Milam Counties with Delivery to Plum Craek	Carrizo and	ther Aquifers	Raw Water Delivered	290	69,897 75,000	2.2	3.0	1.0 1.0	
_	L+14 SCTN-18	Transfer of Reclaimed Water to Corpus Christi through Choke Canyon Reservoir Cotulia Reservoir - Raw Water at the Reservoir	Potential No	vation/Reuse/Exchange	Raw Water at Reservoir Raw Water at Reservoir	297	23.903	1.3	1.0	1.0	1 to 5
	SCTN-13	Palmetto Bend Stage II Reservoir (Delivery to Corpus Christi)	Potential No.	Reservoirs	Raw Water Delivered	299 431	57,080 28,200	1,7	1.0		
二	SCTN-12b G-22	Exchange of Groundwater from the Gulf Coast Aquiter for Imigation Surface Water Rights (Guadatupe-San Antonio River Ba Daworth Reservoir - Raw Water at the Reservoir	Potential No	vation/Reuse/Exchange	Raw Water at Source Raw Water at Reservoir	437	13,200	1.1	1.0	1.0	1 to 5
	G-40	Coptin Crossing Reservoir - Raw Water at the Reservoir	Potential No	Reservoirs	Raw Water at Reservoir	446 473	19,705 32,458	1.7		1.0	> 15
	SCTN-12b	Exchange of Groundwater from the Gulf Coast Aquiller for Imigation Surface Water Rights (Colorado River Basin)	Local/Cons V	/ation/Reuse/Exchange	Raw Water at Source	518	10,748	1.0	1.0		
	SCTN-13 SCTN-13	Palmetto Bend Stage II Reservoir (Delivery to Bay City) Palmetto Bend Stage II Reservoir (Delivery to Saltwater Bantler)	Potential No.		Raw Water Delivered Raw Water Delivered	560 585	30,200 28,100	1.4	1.0	1.0	5 to 15
	G-19	Guadatupe River Dam No. 7 - Firm Yield	Potential No!	Reservoirs	Raw Water at Reservoir	732 764	30,890	2.2	1.0 1.0	1.0	5 to 15
	G-21	Lockhart Reservoir - Raw Water at the Reservoir Other Water Supply Options	Potential No	INCRETACING	Raw Water at Reservoir	764	5,627	1.2	1.0		
		Demand Reduction (Water Conservation) - Municipal		etion/Reuse/Exchange		~400	~43,000	1.0	1.0	1.0	1 to 5
	L-10 (îrr.) L-15	Demand Reduction (Water Conservation) - Irrigation Purchase or Lease of Edwards Irrigation Water for Municipal and Industrial Use		ration/Reuse/Exchange	Raw Water in Amiles	~54 51	-80,000	1.0	1,0	1.0	1 to 5
	SCTN-4	Brush Management	Local/Cons Y	atton/Reuse/Exchange		Undetermined		1.0	1.0	3.0 3.0	1 to 5
	SCTN-5 SCTN-9	Weather Modification Rainwater Harvesting		ation/Reuse/Exchange		Undetermined	Undetermined	1.0	1.0	3.0	1 to 5 (
	SCTN-10	Off-Channel Local Storage (Guadatupe River near Victoria)	Local/Cons Y	ation/Reuse/Exchange	Treated Water Delivered	16,178 587	.057/household 10,000	1.0	1.0	3.0 3.0	155
	SCTN-10 SCTN-10	Off-Channel Local Storage (Guadatupe River near Boerne) Off-Channel Local Storage (Medina River near Yon Ormy)	Local/Cons	ation/Reuse/Exchange	Treated Water Delivered Treated Water Delivered	2,681	1.500	1.4	1,0	3.0	1 to 5
	SCTN-2a	Groundwater Supplies for Municipal Water Systems In the Carrizo-Wilcox Aquifer	Carrizo anc	ther Aquiters	Treates mater Delivered	1,190 N/A	5,000 N/A	1.2	1,0	3.0 1.0	1 to 5
	SCTN-2b	Groundwater Supplies for Municipal Water Systems in the Gulf Coast Aquifer	Carrizo ancia	ther Aquifers		N/A	N/A	1.0	1.0	1.0	1 to 5
	SCTN-2c SCTN-1a	Groundwater Supplies for Municipal Water Systems in the Trinity Aquifer Aquifer Storage and Recovery (ASR)	Carrizo anc	ther Aquifers ther Aquifers		N/A 2428 to 1009	N/A 2,792	1.0	1.0	3.0	1 10 5
	SCTN-1b	Aquifer Storage and Recovery (ASR) - Local Option		her Aquifers		2,089	2,792	1.0	1.0	1.0	1 to 5
			+								
is the	list of stand-	alone options as presented in Volume III. As these options were fitted into the Regional Water Plan, the quantities we	re modified (some cases) and the as	sociated costs were recal	Culated for the	Quantity include	d in the Plan			
~~~	entsi Compos	tte Average based on nine Qualitative Measures of Environmental Impacts (High = 3; Medium = 2; Low = 1) and one m	was me of Sud	unability (High a 1- Med	10 m = 2-1 mu = 21						

# "Inter-Regional Cooperation" Alternative Regional Water Plan

# South Central Texas Regional Water Planning Group

San Antonio River Authority

HDR Engineering, Inc. January 2001



### South Central Texas Region Alternative Water Plans

Alternative Name: Inter-Regional Cooperation

Alternative ID: IRC

Alternative Description: The Inter-Regional Cooperation Alternative Regional Water Plan is based on the cooperative development of water supplies by Regions L. N. P. and K. This plan provides significant additional water supply to Region L without development of new reservoirs. The primary approach involves diversion and delivery of enhanced water supply in the Choke Canyon Reservoir / Lake Corpus Christi (CCR/LCC) System from Choke Canyon Reservoir to the major municipal demand center of the South Central Texas Region without impact to the water supply available to Corpus Christi. Enhanced water supply for Corpus Christi is created by purchase and delivery of water to Lake Corpus Christi from the Guadalupe River at the Saltwater Barrier under existing water rights, the delivery of groundwater from the Gulf Coast Aquifer near Refugio, and the purchase and delivery of unappropriated streamflow and treated effluent to Choke Canyon Reservoir from the San Antonio River near Falls City. Additional inter-regional supply for Region L is created by the purchase and delivery of Colorado River water diverted in Matagorda County and the delivery of groundwater pumped from the Simsboro Aquifer in Bastrop, Lee, and Milam Counties. The inter-regional supplies are augmented by pipeline linkage of Lake Corpus Christi and Choke Canyon Reservoir, pumpage of the Carrizo Aquifer in Wilson and Gonzales Counties, aquifer storage and recovery in Atascosa County, voluntary transfer of Edwards Aquifer irrigation rights to municipal use, and enhanced recharge of the Edwards Aquifer.

The following water supply options are included in the Inter-Regional Cooperation Alternative Regional Water Plan (in no particular order):

- 1 Demand Reduction / Conservation (L-10)
- 2. Joint Development of Water Supply with Corpus Christi (SCTN-14b)
- 3. Carrizo Aquifer Wilson & Gonzales Counties (CZ-10C)
- 4. Aquifer Storage & Recovery (SCTN-1a)
- 5. Carrizo Aquifer Local Supply (SCTN-2a)
- 6. Simsboro Aquifer (SCTN-3c)
- 7. Colorado River in Matagorda County (C-17B)
- 8. Edwards Irrigation Transfers (L-15)
- 9. Edwards Recharge Type 2 Projects (L-18c)
- 10. SAWS Recycled Water Program
- 11. Canyon Reservoir (G-15C)
- 12. Wimberley & Woodcreek Canyon (G-24)
- 13. Weather Modification (SCTN-5)
- 14. Rainwater Harvesting (SCTN-9)
- 15. Brush Management (SCTN-4)
- 16. Small Aquifer Recharge Dams

### This Page Intentionally Blank

# Inter-Regional Cooperation Alternative Regional Water Plan Summary of Key Information for South Central Texas Regional Water Planning Group

### Quantity, Reliability, and Cost

- Plan includes management supplies to meet projected needs, ensure reliability, and maintain springflow, resulting in a quantity of additional water supplies sufficient to meet projected needs for municipal, industrial, steam-electric power, and mining uses through the year 2050.
- Cost is the greatest among the five alternative plans under consideration.

### **Environmental Factors**

- Increased median annual streamflows in the Guadalupe River and decreased median annual streamflows in the San Antonio River.
- Least concerns with Endangered & Threatened Species and greatest concerns with Water Quality & Aquatic Habitat and Cultural Resources among the five alternative plans under consideration.

### Impacts on Water Resources

- No unmitigated reductions in water available to existing water rights.
- Long-term reductions in water levels in the Carrizo Aquifer. Drawdown would be less than the average for the five alternative plans under consideration.

### **Impacts on Agriculture and Natural Resources**

- Major commitment to municipal and irrigation water Demand Reduction (Conservation) (L-10).
- Includes Brush Management (SCTN-4) and Weather Modification (SCTN-5).
- Inclusion of water supply options to meet projected irrigation needs in full is estimated to be economically infeasible at this time. Weather Modification (SCTN-5) assists irrigation and dry-land agriculture (crops and ranching).
- Includes limited potential voluntary transfer of Edwards Aquifer irrigation permits to municipal permits through lease or purchase.

### Other Relevant Factors per SCTRWPG

 Negotiation of agreement(s) between the City of Corpus Christi, Nueces River Authority, Guadalupe-Blanco River Authority, San Antonio Water System, U.S. Bureau of Reclamation, and others.

### Comparison of Strategies to Meet Needs

 Selection of water supply options comprising the alternative plan based on cooperative development and utilization of resources by the South Central Texas and Coastal Bend Regions as well as preferences expressed by planning units.

### **Interbasin Transfer Issues**

- Projected non-irrigation needs in basin(s) of origin are met throughout the planning period.
- Plan includes four interbasin transfers that are integral to Joint Development with Corpus Christi (SCTN-14b). These interbasin transfers deliver water: 1) From the Guadalupe River Saltwater Barrier to Corpus Christi and Choke Canyon Reservoir; 2) From Choke Canyon Reservoir to Bexar County; 3) From the San Antonio River @ Falls City to Choke Canyon Reservoir; and 4) From the Colorado River @ Bay City to Corpus Christi.

### Third-Party Impacts of Voluntary Redistribution of Water

- Potential positive or negative effects of Edwards Irrigation Transfers (L-15).
- Lower water levels in some portions of the Carrizo Aquifer.

### Regional Efficiency

- Edwards Irrigation Transfers (L-15) require no new facilities. Transferred water would likely be available at or very near locations having projected municipal, industrial, steam-electric power, and mining needs in Uvalde, Medina, Atascosa, and Bexar Counties.
- Terminal storage and regional water treatment facilities in Bexar County and aquifer storage and recovery in Atascosa County increase efficiency, improve reliability, and reduce unit cost.
- San Antonio Water System Regional Aquifer Storage & Recovery System (SCTN-1a) substantially reduces peak summer pumpage from the Edwards Aquifer.

### Effect on Navigation

• Not applicable.

### South Central Texas Region (Inter-Regional Cooperation Alternative) – TWDB Evaluation Criteria Summary

Management Strategy	Quantity (acft/yr) ¹	Reliability ²	Unit Cost (\$/acft) ³		Environmental Factors	1	Impacts on Water Resources	lī	npacts on Agricultural and Natural Resources		Other Relevant Factors per SCTRWPG
Municipal Demand Reduction (Conservation) (L-10 Mun.)	44,566	Firm	\$173	•	None. Supply developed through demand reduction.	•	Slight reductions in treated effluent discharge.	•	Fewer water management strategies necessary to meet projected needs.	•	Conservation is a central element of the Plan.
Edwards Irrigation Transfers (L-15)	42,500	Firm	\$80	•	None. Supply developed without new facilities.	•	Reductions in springflow due to relocation of pumpage closer to springs.	•	Plan includes 53 percent of potential maximum voluntary transfer through lease or purchase.	•	Encourages beneficial use of available rights.
Edwards Recharge - Type 2 Projects (L-18c)	13,451	Firm	\$486	•	Concerns with endangered & threatened species, habitat, and TPWD Ecologically Unique Stream Segments at some sites. Enhanced springflows help endangered species.		Limited, as most projects are located on streams that are frequently dry. Increased aquifer levels and springflows.	•	Typically higher well levels in Uvalde & Medina Counties.	•	Positive effects on discharges from Comal and San Marcos Springs. Mitigation of impacts on firm yield of Choke Canyon Res. / Lake Corpus Christi System.
Simsboro Aquifer (SCTN-3c)	55,000	Firm	\$937	•	Concerns with endangered & threatened species, habitat, and cultural resources.	:	Long-term reductions in aquifer levels.  Minimal reductions in instream flow at outcrop.  Potential effects on discharge of small springs.	•	Minimal, if any.	:	Beneficial use of groundwater now unused. Planned Bastrop Co. supply for Region L. exceeds 2030 availability per Region K.
Joint Development of Water Supply with Corpus Christi (SCTN-14b)	218,000	Firm	\$907	•	Concerns with endangered & threatened species, habitat, cultural resources, and TIWD Ecologically Unique Stream Segment.	•	Some reductions in freshwater inflows to the Guadalupe Estuary associated with greater utilization of existing water rights and diversion of unappropriated flow.  Reductions in San Antonio River flows	•	Minimal, if any.	•	Effects of San Antonio River water on Choke Canyon Water Quality Encourages beneficial use of existing reservoir Challenging multi-party agreements.
Canyon Reservoir - River Diversion (G-15C)	15,000	Firm	\$794	•	Minimal. Canyon Reservoir is an existing resource.	1.	Increased instream flows associated with downstream deliveries of water supply.	•	Not applicable.	:	Encourages beneficial use of existing reservoir. Recreational benefits with downstream delivery.
Canyon Reservoir – Wimberley & Woodcreek (G-24)	1,048	Firm	\$1,398	•	Minimal. Pipeline could encounter endantered or threatened species habitat.	•	Minimal, if any.	•	Not applicable.	•	Encourages beneficial use of existing reservoir.
Carrizo Aquifer – Wilson & Gonzales (CZ-10C) ⁵	40,000	Firm ·	\$845	•	Minimal. Pipeline could encounter culturil resource sites.		Modest long-term reductions in aquifer levels.  Minimal reductions in instream flow at outcrop.  Potential effects on discharge of small springs.	•	Minimal, if any.	•	General conformance with policies of Underground Water Conservation Districts.
Carrizo Aquifer - Local Supply (SCTN-2a)	14,700	Firm	\$386	1.	Minimal, if any.	<b>—</b>	Modest long-term reductions in aquifer levels.	•	Minimal, if any.		
SAWS Recycled Water Program (SAWS)	52,215	Firm	\$395	•	None. Water supply derived from increas ^{xd} volumes of treated wastewater.	1	Minimal, if any.	•	Not applicable.	•	Encourages beneficial use of available resource
Purchase of Water From Major Provider (PMP)	8,000	Firm	\$877	•	Minimal, if any. Supply developed as par of other water management strategies.	•	Minimal, if any.	•	Not applicable.		_
Aquifer Storage & Recovery (ASR) – (SCTN-1a)	Unquantified	Firm	Unquantified	•	Minimal. Pipeline could encounter important habitat or encounter cultural resource sites	•	Reduced peak summer pumpage from Edwards Aquifer increases aquifer levels and springflow.	•	Not applicable.	•	SAWS South Bexar County ASR presently in implementation phase.
Brush Management (SCTN-4)	Unquantified	Unknown	Unquantified	•	Concerns regarding endangered & threate ed species, vegetation & wildlife habitat, and cultural resources.	•	Potential benefit to Edwards Aquifer due to increased water for recharge.	•	Potential improvement of pasture for grazing.	•	Additional studies needed to determine quantity of dependable supply during drought
Weather Modification (SCTN-5)	Unquantified	Unknown	Unquantified	•	Potential increases in water supply for willife habitat.	•	Potential increases in rainfall, runoff, and aquifer recharge.	•	Provides water for irrigated and dry-land agriculture (crops & ranching).	•	Concerns regarding increased flood potential.
Rainwater Harvesting (SCTN-9)	Unquantified	Unknown	Unquantified	•	Minimal, if any.	•	Minimal, if any.	•	Not applicable.	•	Consistent with conservation focus of Plan.
Small Aquifer Recharge Dams	Unquantified	Unknown	Unquantified	•	Small potential effects on habitat.	•	Potential increases in local aquifer levels.		Minimal, if any.		
Total of New Supplies	504,480										

Management Strategy	Comparison of Strategies to Meet Needs			Interbasin Transfer Issues	Third-Party Impacts of Voluntary Transfers			Regional Efficiency		Effect on Navigation
Municipal Demand Reduction (Conservation) (L-10 Mun.)		Low unit cost. Inherent environmental benefits.	•	Not applicable.	•	Not applicable.	•	Implementable throughout the region.	1.	None
Edwards Irrigation Transfers (L-15)	•	Low unit cost.	•	Not applicable.	•	Limited transfer to avoid potential socio- economic impacts to third parties.	•	Requires no new facilities.	1.	None
Edwards Recharge - Type 2 Projects (L-18c)	•	Low unit cost	•	Not applicable.	•	Not applicable.	•	Requires no new transmission and treatment facilities.	•	None
Simsboro Aquifer (SCTN-3c)	•	Moderate unit cost.	•	Not applicable.	•	Limited transfer to avoid potential socio- economic impacts to third parties.	•	Beneficial use of groundwater presently produced, but unused.	•	None
Joint Development of Water Supply with Corpus Christi (SCTN-14b)	•	Moderate to high unit cost	•	TNRCC Interbasin Transfer Permit required: 1 Guadalupe to Corpus Christi + CCR; 2) CCR to Bexar County; 3) San Antonio River to CCR; ad 4) Colorado to Corpus Christi.	•	Minimal		Phased sharing of resources between Bexar, Comal and Hays Counties Significant additional surface water supply without construction of a new reservoir.	•	None
Canyon Reservoir - River Diversion (G-15C)	•	Low to moderate unit cost.	•	Not applicable.	•	Not applicable.	<u> </u>	Significant additional surface water supply without construction of a new reservoir.	•	None
Canyon Reservoir - Wimberley & Woodcreek (G-24)	•	High unit cost, but options to meet needs are limited.	•	Not applicable.	•	Not applicable.	•	Additional surface water supply without construction of a new reservoir.	1	None
Carrizo Aquifer - Wilson & Gonzales (CZ-10C) ³	•	Moderate cost.	•	Not applicable.	•	Limited transfer to avoid potential socio- economic impacts to third parties.	•	New supply proximate to Bexar County.	•	None
Carrizo Aquifer - Local Supply (SCTN-2a)	•	Low unit cost.	•	Not applicable.	•	Not applicable.	•	New supply proximate to points of need.	•	None
SAWS Recycled Water Program (SAWS)	•	Low to moderate unit cost.	1.	Not applicable.	•	Not applicable.	T. <u>•</u>	New supply proximate to points of need.	•	None
Purchase of Water From Major Provider (PMP)	•	Low to moderate unit cost.	•	Not applicable.	•	Not applicable.	<b>T•</b>	Economy of participation in regional projects.	1.	None
Aquifer Storage & Recovery (ASR) - (SCTN-la)	•	Effective means of reducing peak summer pumpage from the Edwards Aquifer.	•	Not applicable.	•	Not applicable.	1.	Increases reliability of current supply from the Edwards Aquifer.	•	None
Brush Management (SCTN-4)	•	Insufficient information at this time.	•	Not applicable.	•	Not applicable.	1.	May contribute positively to storage and system management of supplies.	•	None
Weather Modification (SCTN-5)	•	Potentially feasible management strategy to meet a portion of projected irrigation needs.	•	Not applicable.	•	Not applicable.	•	May contribute positively to storage and system management of supplies.	•	None
Rainwater Harvesting (SCTN-9)	•	High unit cost; comparable to domestic well.	1•	Not applicable.	•	Not applicable.	•	Implementable throughout the region.	1.	None
Small Aquifer Recharge Dams	•	High unit cost.	•	Not applicable,	•	Not applicable.	•	Implementable throughout the region.	1.	None

- Notes:

  1) Quantity based on full implementation and utilization of new supplies in year 2050.

  2) Firm reliability indicates that new supply is dependable in a drought of record with full implementation of the Alternative Water Plan.

  3) Unit cost based on full utilization of supply at ultimate capacity of planned facilities and includes treatment and distribution facilities necessary to meet peak daily needs.

  4) Management strategies in the implementation phase include Schertz-Seguin Water Supply Project, Western Canyon Regional Water Supply Project, Hays/IH35 Water Suply Project, Lake Dunlap WTP Expansion and Mid-Cities Project, and GBRA Canyon Reservoir Contract Renewals. Supplies associated with these management strategies were coured as current supply in the technical evaluation of alternative regional water plans.

  5) Subsequent to the technical evaluation of alternative regional water plans, quantity associated with this management strategy was limited in the Regional Water Plan in vid of policies of underground water conservation districts.

## Inter-Regional Cooperation Alternative Regional Water Plan Unit Cost of Cumulative Additional Water Supply





### Inter-Regional Cooperation Alternative Regional Water Plan Cumulative Additional Water Supply



This Page Intentionally Blank

### Choke Canyon Reservoir / Lake Corpus Christi / Lake Texana System



### Inter-Regional Cooperation Alternative Regional Water Plan Atascosa County



South Co	entral Texas Region						Co	unty = A	tascosa
County S	ummary of Projected Water Needs (Shortag	ges) and Wate	er Manag	ement St	ategies			ser Grou	
Projected	l Water Needs (acft/yr)								
1 10100100	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		325	366	401	468	530	587	110103
	Industrial	-	0	300	0	0	030	0	
	Steam-Electric		0	<del>-</del>	<u>ö</u>	ŏ	1,504	8.504	
	Mining		Ö	<u>ŏ</u>	ŏl	995	1,109	1,239	
	Irrigation		38,418	38,718	35,170	43,726	42,190	40,713	
	Total Needs		38,743	37,084	35,571	45,189	45,333	51,043	
	Mun, Ind, S-E, & Min Needs		325	366	401	1,463	3,143	10,330	
	Irrigation Needs		38,418	36,718	35,170	43,726		40,713	
Motor Mo	nagement Strategies (acft/yr)	Candidate	-						
ID#			2000*	2010		2030	2040	2050	N-4
	Description	New Supply			2020		2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)	40.500	356	384	411	259	300	319	1
L-15 SCTN-2a	Edwards Irrigation Transfers Carrizo Aquifer - Local Supply	42,500	,500	500	500	500 1,000	700 3,000	700 10,000	2, 3, 4 5, 6
30114-28	Camzo Aquilar • Cocar Soppiy					1,000	3,000		3,0
SCTN-4	David Management			<del></del>					
SCTN-5	Brush Menagement Weather Modification								
SCTN-9	Rainwater Harvesting								
<u> </u>	Small Aquifer Recharge Dams								<del>-</del>
L-10 (lrr.)	Demand Reduction (Conservation)		3,692	3,692	3,692	3,692	3,692	3,692	8
	Total New Supplies		4,548	4,576	4,603	5,451	7,692	14,711	
	Total System Mgmt. Supply / Deficit		-34,195	-32,508	-30,968	-39,738	-37,641	-36,332	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		531	518	510	296	857	689	
	Irrigation System Mgmt. Supply / Deficit		-34,726	-33,026	-31,478	-40,034	-38,498	-37,021	
Notes:						.1			
•	Candidate New Supplies shown for year 2000 are identify	ied for priority imp	tementation.	but will not t	e available i	mmediately.			
1	Damand Reduction (Conservation) strategies assumed I								
2	Candidate New Supply to be shared among Uvalde, Med						ought.		
3	Pursuant to draft EAA Critical Period Management rules,					rcent of			
	an estimated potential annual transfer of 50,000 acft bas	<u>ed on Proposed P</u>	ermils prora	<u>ted to 400,00</u>	O acit/yr.				
4	Additional Edwards supply is for City of Lylle.								
5	Additional Carrizo supply is for Steam-Electric and Minin			1 2 2 4					
6	Early Implementation of facilities assumed in cost estima						Lift and		
<u>/</u>	Option expected to provide additional water supply in ma							leation sate	
8	Estimates based upon use of LEPA systems on 50 perce	ini oi acreages im	gated in 199	r, with conse	SIVERIOR EL 20	heicem of the	пувнол вррі	cauon rate	

### Inter-Regional Cooperation Alternative Regional Water Plan Bexar County



South Cent	tral Texas Region	Tregional i						County	= Bexar
	mary of Projected Water Needs (Shortages)	and Water Ma	nagement	Strategle	S	·		User Gro	
	ater Needs (acft/yr)				-				
FTOJECTEG VI	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
<b>.</b>	Municipal		122,867	154,495	196,301	262,070	315,633	353,309	110.00
<del></del>	Industrial		0	0	190,301	1,430	4,759	8,192	
	Steam-Electric		<u></u>	ŏ	0	1,750	4,,00	0,102	
	Mining		4,963	4,938	5,201	5,408	5,645	5,982	
	Ingalion		18,728	17,297	15,738	14,245	12,815	11,444	
	Total Needs		146,558	176,728	217,240		338,652	378,907	
	Mun, Ind, S-E, & Min Needs		127,830	159,431	201,502		326,037	367,463	
	Irrigation Needs		18,728		15,738		12,815		
Water Manag	gement Strategies (acft/yr)	Candidate						•	
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		33,528	42,509	41,210	36,533	38,834	40,934	1
L-15	Edwards Impation Transfers	42,500	25,000	35,000	35,000	34,000	33,800	32,800	2, 3
SCTN-14b	Joint Development with Corpus Christi	218,000	79,000	79,000	155,000	191,000	204,000	218,000	4, 5
SCTN-3c	Simsboro Aquifer	55,000	51,000	48,000	41,000	27,000	18,500	0	6
CZ-10C	Carrizo Aquifer - Wilson & Gonzales	40,000		19,000	29,000	35,500	35,500	35,500	7
	SAWS Recycled Water Program			19,826	26,737	35,824	43,561	52,215	8, 9
L-18c	Edwards Recharge - Type 2 Projects	13,451	-		13,451	13,451	13,451	13,451	
SCTN-1a	Aquifer Storage & Recovery - Regional								10
SCTN-4	Brush Management								11
SCTN-5	Weather Modification							-	11
SCTN-9	Rainwater Harvesting								11
	Small Aquifer Recharge Dams								11
L-10 (lrr.)	Demand Reduction (Conservation)		4,521	4,521	4,521	4,521	4,521	4,521	12
	Total New Supplies		193,049	247,856	345,919	377,829	390,167	397,421	
	Total System Mgmt. Supply / Deficit		46,491	71,128	128,679	94,678	51,315	18,514	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		60,698	83,904	139,896		59,609		·
l	Deficit		55,555						
	Irrigation System Mgmt. Supply / Deficit		-14,207	-12,776	-11,217	-9,724	-8,294	-6,923	
Notes:		j		Ï					
•	Candidate New Supplies shown for year 2000 are id	entified for priorit	y implemen	tation, but w	il not be av	allable imme	diately.		
1	Demand Reduction (Conservation) strategies assum	ed largely reflect	ed in projec	ted water de	mands.				
2	Candidate New Supply to be shared among Uvalde,	Medina, Atascos	a, and Bexa	r Counties.	Supply may	y not be relia	ble in droup	jht.	
3	Pursuant to draft EAA Critical Period Management ru								
	an estimated potential annual transfer of 50,000 acft	based on Propos	ed Permits	prorated to	400,000 acf	tlyr.			
4	Candidate New Supply requires cooperative agreem	ent(s) with City of	f Corpus Ch	visti, Nuece:	River Auth	ority, & USB	IR.		
5	Requires delivery of 32,000 actifyr of Colorado River	water (Garwood	) to Corpus	Christi in 20	20 and day	elopment of	Gulf Coast		
	Aquifer (SCTN-2b) at long-term average supply of 21								
6 7	Candidate New Supply shared by Bexar, Hays, and								
7	Candidate New Supply shared by Bexar and Guadal	upe Counties. E	ffects on reg	ional aquife	r levels to b	e quantified.			
8	Current SAWS Recycled Water Program is included	in the 24,941 acf	tyr (consur	nptive reuse	) in estimate	d needs.			
9	Future use of recycled water for non-potable uses ar								
10	SAWS ASR program in southern Bexar County incre								
11	Option expected to provide additional water supply in								
12	Estimates based upon use of LEPA systems on 80 p					on at 40 per	cent of irriga	ition	
	application rate, but applicable to only 50 percent of	Edwards Aquifer	irrigation pe	rmitted quar	ntities.				

### Inter-Regional Cooperation Alternative Regional Water Plan Caldwell County



South Cer	ntral Texas Region						(	County =	Caldwel
County Su	mmary of Projected Water Needs (Shortages) and	Water Manag	ement Stra	tegies				User Gro	
<u>Projected V</u>	Vater Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0	188	393	668	714	737	
	Industrial		0	0	0	0	0	0	
	Steam-Electric		0	0	0	. 0	0	0	
	Mining		0	0	0	0	0	0	
	Irrigation		0	0	0	0	0	0	
	Total Needs		0	188	393	668	714	737	
	Mun, Ind, S-E, & Min Needs		0	188	393	668	714	737	
	Irrigation Needs		0	0	0	0	0	Ō	
							,		
Water Mana	agement Strategies (acft/yr)	Candidate					T T		
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		195	206	218	82	93	104	
SCTN-2a	Carrizo Aquifer - Local Supply			500	500	1,000	1,000	1,000	
	•								
					_				
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)								
	Total New Supplies		195	706	718	1,082	1,093	1,104	
	T-4-1 Contain Mount Complete Definite		405	546	995	44.41	070	207	
	Total System Mgmt. Supply / Deficit		195	518	325	414	379	367	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		195	518	325	414	379	367	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	Ö	ō	0	
Notes:	•								
1	Demand Reduction (Conservation) strategies assumed largely	reflected in project	ed water dema	nds.	1		·		•
2	Additional well(s) for Lockhart.		<u> </u>				I		
3	Option expected to provide additional water supply in many ye	ars, but dependable	supply during	drought is pre	sently unquar	ntified.			

### Inter-Regional Cooperation Alternative Regional Water Plan Comal County



South Cen	tral Texas Region					Ī		County	= Comal
County Sur	nmary of Projected Water Needs (Shortages) ar	id Water Mana	gement S	trategies				User Grou	
Duningston 13	Manager Manager Anna Manager M							1	
Projected v	Vater Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,289	5,049	10,487	18,282	25,205	33,062	
	Industrial		1,388	1,425	1,486	1,737	2,009	2,289	
	Steam-Electric		0	0	0	0	0	0	
	Mining		5,570	5,464	5,628	5,796	3,590	2,224	
	Irrigation		30	14	0	0	0	0	
	Total Needs		9,277	11,952	17,601	25,815	30,804	37,575	
	Mun, Ind, S-E, & Min Needs		9,247	11,938	17,601	25,815	30,804	37,575	
	Irrigation Needs		30	14	. 0	0	0	0	
	agement Strategles (acft/yr)	Candidate					·		
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		616	718	848	718	824	942	1
G-15C	Canyon Reservoir - River Diversion	15,000	15,000	15,000	15,000	15,000	15,000	15,000	2
SCTN-3c	Simsboro Aquifer	55,000			3,500	12,000	16,500	24,000	3, 4
	Small Aquifer Recharge Dams					· · · · · · · · · · · · · · · · · · ·			
L-10 (frr.)	Demand Reduction (Conservation)								
	Total New Supplies		15,616	15,718	19,348	27,718	32,324	39,942	
	Total Contain March County ID-Roll		0.000	0.700	4 949	4.000	4 500	0.007	
	Total System Mgmt. Supply / Deficit	<u></u>	6,339	3,766	1,747	1,903	1,520	2,367	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		6,369	3,780	1,747	1,903	1,520	2,367	
	Irrigation System Mgmt. Supply / Deficit		-30	-14	0	0	0	0	
Notes:						1		,	
*	Candidate New Supplies shown for year 2000 are identified for	or priority implemen	dation but will	I not be eveile	hla immedial	elv	<del></del>	<del>. · · · · ·  </del>	<del></del>
1	Demand Reduction (Conservation) strategies assumed larget				ion minerial	7-		<del></del>	
2	Portion of Canyon firm yield (with amendment) diverted below		New Males Ger	1100.	<del></del>	<del></del>			
3	Candidate New Supply shared by Bexar, Hays, and Comal C		regional aggi	fer levels to b	e quantified		<del></del>	<del></del>	
4	Early Implementation of facilities assumed in cost estimation					1			

# Inter-Regional Cooperation Alternative Regional Water Plan Dimmit County



South Cen	tral Texas Region		1					County =	= Dimmit
		nd Water Man	agement S	trategies				User Grou	ıp(s) ≃ all
D11-1	Value								
Projected v							2045		
								2050	Notes
				+				1,959	
			Y					0	,
<del></del>								0	
								949	
			· ·					1,331	
								4,239	
								2,908	
	Irrigation Needs		0}	0	0	2,133	1,737	1,331	
Water Mana	agement Strategies (acft/yr)	Candidate							
ID#		New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		131	144	156	104	118	133	
SCTN-2a	Carrizo Aquifer - Local Supply		500	1,000	1,000	2,500	3,000	3,500	2, 3
SCTN-4									
SCTN-5									
SCTN-9								<del></del>	
. 40 (1)									; <del></del>
L-10 (lrr.)					4 4 7 4	2 22 4			
	Total New Supplies		631	1,144	1,156	2,604	3,118	3,633	
	Total System Hamt System I Deficit		402	720	507	4 400	4 022	-606	
	Total System Mgmt. Supply / Delicit								
			493	739	507	635	/14	725	
							4 = 50=		<del></del>
	irrigation System Mgmt. Supply / Deficit		0	0		-2,133	-1,/3/	-1,331	
Materi							1	·	
Notes:	Condidate Name Constitute about for your 2000 and Identified A	las ariarits imata	etetles but	l net ha aveile	hla immadist				
	u wholowe ivew supplies shown for year zoull are identified t	or businty imbiewei	ntadon, but Wil		inia liuliuegigij	eiy.			
<u>-</u>			cted water de	mande					
1	Demand Reduction (Conservation) strategies assumed large		cted water de	mands.					
1 2 3	Demand Reduction (Conservation) strategies assumed large	ly reflected in proje					<u></u>		

# Inter-Regional Cooperation Alternative Regional Water Plan Frio County



South Cen County Sun	itral Texas Region nmary of Projected Water Needs (Shortages) and	d Water Manag	gement Stra	ategies					nty = Frio up(s) = all
Projected V	Vater Needs (acft/yr)		1	-					
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		ol	0	0	O	Ö	0	
	Industrial		Ö	Ō	Ō	Ō	0	O	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	. 0	0	0	0	0	
	Irrigation		71,128	67,646	64,365	76,505	73,519	70,662	
	Total Needs		71,126	67,646	64,365	76,505	73,519	70,662	
	Mun, Ind, S-E, & Min Needs		o o	0	0	0	0	0	
	Irrigation Needs	··· <del>····</del>	71,126	67,646	64,365	76,505	73,519	70,662	
	gation needs		,.20	5.,546	U-1,500	,	. 4,510	. 5,502	
Water Mana	gement Strategies (acft/yr)	Candidate						-	
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
		Maw Supply							
L-10 (Mun.)	Demand Reduction (Conservation)		184	195	205	116	121	124	
	<del></del>		├ <del>-</del>						<del>                                     </del>
			<del> </del>						
			<del></del>		<del></del>	· <del></del>			
<del></del>			<del></del>		· <del></del>				
	· · · · · · · · · · · · · · · · · · ·		<u> </u>						
<del></del>		. <del></del>	1				<del></del>		
SCTN-4	Brush Management								2
SCTN-5	Weather Modification		†——— <u></u> ;						2
SCTN-9	Rainwater Harvesting		[						2
	Small Aquifer Recharge Dams								2
L-10 (In.)	Demand Reduction (Conservation)		5,947	5,947	5,947	5,947	5,947	5,947	3
	Total New Supplies		6,131	6,142	6,152	6,083	6,068	6,071	
	Total System Mgmt. Supply / Deficit		-64,995	-61,504	-58,213	-70,442	-67,451	-64,591	
<del></del>	Mun, Ind, S-E, & Min System Mgmt. Supply /		184	195			121	124	
	Deficit		'57	183	203			127	
			66 470	64 600	-58,418	-70,558	-87,572	-64,715	
	Irrigation System Mgmt. Supply / Deficit		-65,179	-61,699	-30,410	-/ 0,535	*01,372	*04,7 15	
Natar									
Notes:	Demand Reduction (Conservation) strategies assumed largely	reflected to period	lod water dom	node -					
2	Option expected to provide additional water supply in many ye	iningcian in biolec	e encola divica	devicht is se	oconthy unove	ntified			i
3	Estimates based upon use of LEPA systems on 50 percent of	accesses injusted	n 1997 with ~	neemaline el	20 nercent of	irination	<del></del>		
J	application rate.	ari sollas iiriliaiga	1997, WALL C	NI IOUIAGIAGIOII BI	zo percent u	milianon .			
	Jappineauon rate.			i		L			

## Inter-Regional Cooperation Alternative Regional Water Plan Guadalupe County



South Cen	tral Texas Region						Co	unty = Gu	adalupe
	nmary of Projected Water Needs (Shortages) a	nd Water Mana	gement S	trategies				User Grou	
Prolected V	Vater Needs (acft/yr)						·		
	User Group(s)	<del></del>	2000	2010	2020	2030	2040	2050	Notes
	Municipal	·	29	23	30	71	87	773	- 010.000
	Industrial		985	1,204	1,350	1,487	1,692	1,899	
	Steam-Electric		0	.0	0	0	Ö	Ō	
	Mining		198	198	200	202	207	213	
	Irrigation		985	879	779	684	594	508	
	Total Needs		2,195	2,304	2,359	2,444	2,580	3,393	
	Mun, Ind, S-E, & Min Needs		1,210	1,425	1,580	1,760	1,986	2,885	
	Irrigation Needs		985	879	779	684	594	508	
Water Mana	agement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Damand Reduction (Conservation)		235	236	236	5	5	6	
CZ-10C	Carrizo Aquifer - Wilson & Gonzales	40,000	1,500	1,500	2,000	2,000	2,500	4.500	2,
<u> </u>	Odniza / Maria / Village   Village								
	Small Aquifer Recharge Dams								
L-10 (irr.)	Demand Reduction (Conservation)								
	Total New Supplies		1,735	1,736	2,236	2,005	2,505	4,506	
	Total System Mgmt. Supply / Deficit		-460	<b>-568</b>	-123	-439	-75	1,113	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		525	311	656	245	519	1,621	
	Deficit				į		- 1		
	Irrigation System Mgmt. Supply / Deficit		-985	-879	-779	-684	-594	-508	
Notes:					1				
•	Candidate New Supplies shown for year 2000 are identified	or priority impleme	ntation, but wil	l not be avails	able immediate	elv.			
1	Demand Reduction (Conservation) strategies assumed large								
2	Candidate New Supply shared by Bexar and Guadalupa Cou				quantified.				
3	Early Implementation of facilities assumed in cost estimation	to ensure sufficient	supply during	drought.					
4	Option expected to provide additional water supply in many y	ears, but dependal	ole supply dur	ing drought is	presently unq	uantified.			

### Inter-Regional Cooperation Alternative Regional Water Plan Hays County



South Cen	tral Texas Region							Count	y = Hays
	nmary of Projected Water Needs (Shortages) and	Water Manag	ement Str	ategies					up(s) = all
Projected v	/ater Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		4,325	7,609	10,980	16,349	22,698	29,059	
	Industrial		0	0	0	0	0	0	
	Steam-Electric		0	0	0	0	0	0	
	Mining		84	82	68 0	55	37	28 0	
	Irrigation		0	0			0		
	Total Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Mun, Ind, S-E, & Min Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Irrigation Needs		0	0	0	0	0	0	
Mater Mana	gement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)	ttott Gupping	647	747	873	699	906	1,174	1
SCTN-3c	Simsboro Aquifer	55,000	4,000	7,000	10,500	16,000	22,000	31,000	2. 3
G-24	Canyon Reservoir	1,048	1,048	1,048	1,048	1,048	1.048	1,048	<u></u> 4
l <del></del>	Outifor Hood von	1,9.19		1,0.10	.,,,,,,,	.,,,,,,,	.,,,,,,,	.,,,,,,	
	Small Aquifer Recharge Dams								5
L-10 (lrr.)	Demand Reduction (Conservation)								
							•		
	Total New Supplies		5,695	8,795	12,421	17,747	23,954	33,222	
	Total System Mgmt, Supply / Deficit		1,286	1,104	1,373	1,343	1,221	4,135	
,	Mun, Ind, S-E, & Min System Mgmt. Supply /		1,286	1,104	1,373	1,343	1,221	4,135	
	Deficit								
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	Ō	0	
Notes:									
*	Candidate New Supplies shown for year 2000 are identified for	ntiority implements	ation but will r	not he availabl	e immediately	<del></del>			
1	Demand Reduction (Conservation) strategies assumed largely				o miniculately.	<del>'</del>			
<del> </del>	Candidate New Supply shared by Bexar, Hays, and Comal Co	unlies. Effects on re	egional aquife	r levels to be	quantified.				
3	Early implementation of facilities assumed in cost estimation to	ensure sufficient s	upply during d	rought.	1				
4	Candidate New Supply for Wimberley and Woodcreek.		•						
5	Option expected to provide additional water supply in many ye	ars, but dependable	supply during	drought is pr	esently unqua	ntified.			

# Inter-Regional Cooperation Alternative Regional Water Plan Kendall County



South Cen	tral Texas Region				-			County =	Kendall
	nmary of Projected Water Needs (Shortages) and	l Water Manag	ement Stra	ategles				User Grou	
D l 4 1 14								. (	
Projected v	Vater Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		1,070	1,560	2,808	4,099	5,578	7,518	
	Industrial		2	. 3	4	4	5	6	
	Steam-Electric		0	0	0		0	0	
<del></del>	Mining		0		0	0	0	0	
	Imgation		0	0	0	0	0	0	
	Total Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Mun, Ind, S-E, & Min Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Irrigation Needs		0	0	0	0	0	0	
Water Mans	agement Strategies (acft/yr)	Candidate				-			
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		67	71	71	11	11	11	1
L-10 (mon.)	Purchase Water from Major Provider		2,000	2,000	3,000	5,000	6,000	8,000	2, 3
<del> </del>				<del></del>	··			<del></del>	
00714	Brush Management	· · · · · · · · · · · · · · · · · · ·							
SCTN-4 SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting							<del>}</del>	
20114-9	Small Aquifer Recharge Dams								
L-10 (lm.)	Demand Reduction (Conservation)						· · · · · · · · · · · · · · · · · · ·		
L-10 (III.)	Total New Supplies		2,067	2,071	3,071	5,011	6,011	8,011	
	Total System Mgmt. Supply / Deficit		995	508	259	908	428	487	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		995	508	259	908	, 428	487	
	Deficit								<del> </del>
	Irrigation System Mgmt. Supply / Deficit	<u> </u>	Ò	0	0	0	0	0	
Notes:									
•	Candidate New Supplies shown for year 2000 are identified for				e immediately.				
1	Demand Reduction (Conservation) strategies assumed largely				1				
2	Assumed purchase from Bexar County major provider. Kenda	Il County water nee	ds are not refle	ected in Bexar	County table.				
3	Early implementation of facilities assumed in cost estimation to								
4	Option expected to provide additional water supply in many ye	ars, but dependable	e supply during	drought is pre	esently unqua	ntified.			

# Inter-Regional Cooperation Alternative Regional Water Plan Medina County



County Summary of Projected Water Needs (Shortages) and Water Management Strategies

County = Medina User Group(s) = all

riojectea t	Water Needs (activyr)		2000	2010	2020	2030	2040	2050	Notes
	Municipal								HOTES
	Industrial		2,015	2,110	2,206 0	2,427	2,582 0	2,750 0	
	Steam-Electric		<u>ŏ</u>	<u>_</u>	- 0	- 0			
	Mining		68	68		72	74	76	
	Irrigation		89,757	87,941		80,963	75,663	70.587	
	Total Needs		91,840	90,119		83,462	78.319	73,413	
	Mun, Ind, S-E, & Min Needs		2,083	2,178		2,499	2,656	2,826	
<del></del>	Irrigation Needs		89,757	87,941		80,963			
	irrigation needs		08,737	01,841	02,101	60,803	75,663	70,587	
Water Man	agement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		200	205	211	73	76	78	1
L-15	Edwards Irrigation Transfers	42,500	3,000	3,000		3,000	3,000	3,000	2. 3
									<del></del>
00731.4	0 1 1								
SCTN-4 SCTN-5	Brush Management Weather Modification								<del></del>
SCTN-9	Rainwater Harvestino								
30114-8	Small Aquifer Recharge Dams						-		<del>7</del>
L-10 (lm.)	Demand Reduction (Conservation)		11,867	11,867	11,867	11,867	11,867	11,867	
	Total New Supplies		15,067	15,072				14,945	
				,		1 1,0 10	1 1,0 10	1 1,0 10	
	Total System Mgmt. Supply / Deficit		-76,773	-75,047	-69,359	-68,522	-63,376	-58,468	
·	Mun, Ind, S-E, & Min System Mgmt. Supply /		1,117	1,027	935	574	420	252	
	Deficit	İ	.,			1			
	Irrigation System Mgmt. Supply / Deficit		-77,890	-76,074	-70,294	-69,096	-63,796	-58,720	
			,					22,	
Notes:									•
•	Candidate New Supplies shown for year 2000 are Identified f	or priority implemen	ntation, but wi	I not be availa	able immediat	ely.	<u>;</u>		
1	Demand Reduction (Conservation) strategies assumed large								
2	Candidate New Supply to be shared among Uvalde, Medina,					in drought.			
3	Pursuant to draft EAA Critical Period Management rules, Car								
	an estimated potential annual transfer of 50,000 acft based of								
4	Option expected to provide additional water supply in many y								
5	Estimates based upon use of LEPA systems on 80 percent o				at 40 percent	of imigation			
	application rate, but applicable to only 50 percent of Edwards	Aquiter Imigation p	ermitted guar	tities.					

South Central Texas Region

Projected Water Needs (acft/yr)

# Inter-Regional Cooperation Alternative Regional Water Plan Uvalde County



South Cen	tral Texas Region							County	
County Sun	nmary of Projected Water Needs (Shortages) and	Water Manag	ement Str	ategies				<b>User Gro</b>	up(s) = al
Projected W	Vater Needs (acft/yr)		ı						
i iojecteu v	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal Municipal		2,682	3,166	3,493	4,241			110168
	Industrial		2,002	3,100	3,493	4,241	4,880 0	5,609 0	
	Steam-Electric		<del></del>	0			0	<u>0</u>	
	Mining	<del></del> -		0				0	
	Irrigation		63,443	63,343	58,335	56,366	51,766	47,475	
	Total Needs		66,125	66,509	61,828	60,607	56,646	53,084	
	Mun, Ind, S-E, & Min Needs		2,682	3,166	3,493	4,241	4,880	5,609	
	Irrigation Needs		63,443	63,343	58,335	56,366	51,766	47,475	
Nater Mans	gement Strategies (acft/yr)	Candidate							
D#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
-10 (Mun.)	Demand Reduction (Conservation)		318	346	371	235	258	283	
-15 (W.GH.)	Edwards Irrigation Transfers	42,500	3,000	4,000	4,000	5,000	5,000	6,000	2, 3,
·									
SCTN-4	Brush Management								·
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
40.0	Small Aquifer Recharge Dams			4444					
L-10 (lrr.)	Demand Reduction (Conservation)		14,143	14,143	14,143	14,143	14,143	14,143	
	Total New Supplies		17,461	18,489	18,514	19,378	19,401	20,426	
	Total System Mgmt. Supply / Deficit		-48,664	-48,020	-43,314	-41,229	-37,245	-32,658	L
	Mun, Ind, S-E, & Min System Mgmt. Supply /		636	1,180	878	994	378	674	
	Deficit	i	955	1,100	5,0	334	3,9	0/-	
	Irrigation System Mgmt. Supply / Deficit		-49,300	-49,200	-44,192	-42,223	27 622	22 222	
	irrigation System Mgmt. Supply / Dencit		-48,300	-48,200	-44, 192	-42,223	-37,623	-33,332	
lotes:	·								<b>——</b>
	Candidate New Supplies shown for year 2000 are identified for	priority implements	ation, but will n	not be availabl	e immediately.				
1	Demand Reduction (Conservation) strategies assumed largely	reflected in projecte	ed water dema	ands.					
	Candidate New Supply to be shared among Uvalde, Medina, A	tascosa, and Bexar	Counties. Su	upply may not	be reliable in o	drought.			
3	Pursuant to draft EAA Critical Period Management rules, Cand	idate New Supply re	epresents app	roximately 85	percent of				
	an estimated potential annual transfer of 50,000 acft based on	Proposed Permits	prorated to 400	0,000 acft/yr.					
	Early implementation of facilities assumed in cost estimation to								
	Option expected to provide additional water supply in many ye	ars, bul dependable	supply during	drought is pr					
3	Estimates based upon use of LEPA systems on 80 percent of	acreages irrigated in	n 1997, wilh co	onservation at	40 percent of	irrigation			
	application rate, but applicable to only 50 percent of Edwards /						_		

## Inter-Regional Cooperation Alternative Regional Water Plan Wilson County



South Cen	tral Texas Region							County	= Wilson
	nmary of Projected Water Needs (Shortages) and	Water Manag	ement Stra	tegles				User Grou	
Projected V	Vater Needs (acft/yr)	-							
r rojectou v	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal Municipal		. 0	0	ol	0	63	145	110100
	Industrial		<del></del>	ŏ	- ŏ	- 6	0	0	· · · · · ·
	Steam-Electric		0	<del></del>	ől	<del>o</del> l	ŏ	<del>o</del> l	
	Mining		ŏ	Ö	Ŏ	Ŏ	0	ol ol	
	Irrigation		o	0	Ŏ	Ö	Ö	ol ol	
	Total Needs		0	0	0	0	63	145	
	Mun, Ind, S-E, & Min Needs		0	0	<del>-</del>	ō	63	145	
	Irrigation Needs		Ö	<u>_</u>		<u>o</u>	0	0	
<b>Water Mana</b>	agement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
-10 (Mun.)	Demand Reduction (Conservation)		171	183	194	114	122	130	
SCTN-2a	Carrizo Aquifer - Local Supply						200	200	
SCTN-4	Brush Management Weather Modification					····································	<del> </del>		·
SCTN-5 SCTN-9									
2C114-à	Rainwater Harvesting Small Aquiler Recharge Dams	··········							
L-10 (lm.)	Demand Reduction (Conservation)					<del></del>			
L-10 (III.)	Total New Supplies		171	183	194	114	322	330	·
	total New Supplies		171	103	184	1 14	322	_330	
	Total System Mgmt. Supply / Deficit		171	183	194	114	259	185	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		171	183	194	114	259	185	
	Deficit								
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	C	
lotes:						i	•		
	Demand Reduction (Conservation) strategies assumed largely	reflected in project	ed water dema	inds.		I			
?	Additional well(s) for Floresville.								
3	Option expected to provide additional water supply in many ye	ars, but dependable	e supply during	drought is pr	esently unqua	ntified.			

# Inter-Regional Cooperation Alternative Regional Water Plan Zavala County



5-38

Projected Water Needs (acft/yr)         2000         2010         2020         2030         2040         2050         No           Municipal         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		tral Texas Region								= Zavala
User Group(s)	County Summary of Projected Water Needs (Shortages) and Water Management Strategies							User Group(s) = all		
User Group(s)	Projected M	ator Noode (acfflur)								
Municipal   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FIOJECIEU V			2000	2010	2020	2030	2040	2050	Notes
Industrial										110105
Steam-Electric				I						
Mining	<del></del>			1						
Irrigation										
Total Needs   80,722   76,589   72,655   88,293   84,673   81,200				80.722	76.589	72.655	88,293	84.673	81,200	
Mun, Ind, S-E, & Min Needs   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										-
Irrigation Needs   80,722   76,589   72,655   88,293   84,673   81,200					70,555		00,250		01,200	
Water Management Strategies (acft/yr)   Candidate   ID#   Description   New Supply   2000   2010   2020   2030   2040   2050   Not				80,722	76,589		88,293	84,673	81,200	
ID#   Description   New Supply   2000   2010   2020   2030   2040   2050   Notes:						1-,440		5.,,575		
ID#   Description   New Supply   2000   2010   2020   2030   2040   2050   Notes:	Water Mana	gement Strategies (acft/vr)	Candidate		-					
L-10 (Mun.) Demand Reduction (Conservation) 190 193 194 90 103 104  SCTN-4 Brush Management SCTN-5 Weather Modification SCTN-9 Rainwater Harvesting Small Aquifer Recharge Dams L-10 (irr.) Demand Reduction (Conservation) 6,401 6,401 6,401 6,401 6,401 Total New Supplies 6,591 6,594 6,595 6,491 6,504 6,505  Total System Mgmt. Supply / Deficit -74,131 -69,995 -66,060 -81,802 -78,169 -74,895 Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit 190 193 194 90 103 104 Deficit 190 193 194 90 103 104 Deficit -74,321 -70,188 -66,254 -81,892 -78,272 -74,799  Notes:				2000	2010	2020	2030	2040	2050	Notes
SCTN-4   Brush Management   SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Sm	L-10 (Mun.)									1
SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505										<del></del>
SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505				i						
SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505										
SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505										
SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505										
SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505										
SCTN-5   Weather Modification   SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505										
SCTN-9   Rainwater Harvesting   Small Aquifer Recharge Dams   L-10 (Irr.)   Demand Reduction (Conservation)   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,401   6,505	SCTN-4	Brush Management								2
Small Aquifer Recharge Dams	SCTN-5									2
L-10 (Irr.) Demand Reduction (Conservation) 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,401 6,40	SCTN-9							·		2
Total New Supplies 6,591 6,594 6,595 6,491 6,504 6,505  Total System Mgmt. Supply / Deficit -74,131 -69,995 -66,060 -81,802 -78,169 -74,695  Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit 190 193 194 90 103 104  Deficit -74,321 -70,188 -66,254 -81,892 -78,272 -74,799  Notes:  Demand Reduction (Conservation) strategies assumed largely reflected in projected water demands.		Small Aquifer Recharge Dams								2
Total System Mgmt. Supply / Deficit -74,131 -69,995 -66,060 -81,802 -78,169 -74,695  Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit 190 193 194 90 103 104  Period 190 190 190 190 190 190 190 190 190 190	L-10 (lrr.)	Demand Reduction (Conservation)		6,401	6,401	6,401	6,401	6,401	6,401	3
Mun, Ind, S-E, & Min System Mgmt. Supply / 190 193 194 90 103 104   Deficit   Prigation System Mgmt. Supply / Prigation System Mgmt. Supply		Total New Supplies		6,591	6,594	6,595	6,491	6,504	6,505	
Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit 190 193 194 90 103 104 104 105 105 105 105 105 105 105 105 105 105		7-4-1 Qual-to- 11-10-10-10-10-10-10-10-10-10-10-10-10-1		74.464	00 000	00.000	04.000	70.400	74.005	
Deficit   Irrigation System Mgmt. Supply / Deficit   -74,321   -70,188   -66,254   -81,892   -78,272   -74,799	ļ									<del></del>
Irrigation System Mgmt. Supply / Deficit -74,321 -70,188 -66,254 -81,892 -78,272 -74,799  Notes:  Demand Reduction (Conservation) strategies assumed largely reflected in projected water demands.				ן טפר	193	194	90	103	104	
Notes:  Demand Reduction (Conservation) strategies assumed largely reflected in projected water demands.				74 224	70 400	66 264	94 902	70 070	74 700	
1 Demand Reduction (Conservation) strategies assumed largely reflected in projected water demands.		irrigation System mgmt. Supply / Deficit		-/4,321	•/U,105	-00,234	-01,092]	-10,414	-14,199	
1 Demand Reduction (Conservation) strategies assumed largely reflected in projected water demands.	Notes:									
2 Option expected to provide additional water supply in many years, but dependable supply during drought is presently unquantified.	1	Demand Reduction (Conservation) strategies assumed	largely reflected	in projected	water dema	ınds.	<del>                                     </del>			
	2	Option expected to provide additional water supply in many years, but dependable supply during drought is presently unquantified.								
3 Estimates based upon use of LEPA systems on 50 percent of acreages irrigated in 1997, with conservation at 20 percent of Irrigation	3									
application rate.							1			



Inter-Regional Cooperation Alternative Regional Water Plan Simulated Comal Springs Discharge



Inter-Regional Cooperation Alternative Regional Water Plan Simulated San Marcos Springs Discharge

Inter-Regional Cooperation Alternative Regional Water Plan Simulated Edwards Aquifer Levels

Inter-Regional Cooperation Alternative Regional Water Plan Simulated Edwards Aquifer Pumpage



Inter-Regional Cooperation Alternative Regional Water Plan Additional Carrizo Groundwater Pumpage





Note: Drawdown is referenced to simulated 1994 aquifer levels and includes both projected local demands and development of water supply options in this alternative regional water plan.

Monitoring Well Location

Inter-Regional Cooperation Alternative Regional Water Plan Simulated Carrizo Aquifer Drawdown



Inter-Regional Cooperation Alternative Regional Water Plan - Carrizo Aquifer



Inter-Regional Cooperation Alternative Regional Water Plan - Carrizo Aquifer



Inter-Regional Cooperation Alternative Regional Water Plan - Carrizo Aquifer



Inter-Regional Cooperation Alternative Regional Water Plan - Carrizo Aquifer





Inter-Regional Cooperation Alternative Regional Water Plan Streamflow Comparisons





Inter-Regional Cooperation Alternative Regional Water Plan Streamflow Comparisons





Inter-Regional Cooperation Alternative Regional Water Plan Streamflow Frequency Comparisons

# Choke Canyon Reservoir/Lake Corpus Christi — Lake Level Trace Year 2050



Inter-Regional Cooperation Alternative Plan

# Lake Corpus Christi — Storage Frequency Comparison Year 2050



Inter-Regional Cooperation Alternative Plan

# Choke Canyon Reservoir — Storage Frequency Comparison Year 2050



Inter-Regional Cooperation Alternative Plan

# "Recharge & Recirculation" Alternative Regional Water Plan

South Central Texas
Regional Water Planning Group

San Antonio River Authority

HDR Engineering, Inc. January 2001





Alternative Name: Recharge and Recirculation Alternative

Alternative ID: R&R

Alternative Description: The Recharge and Recirculation Alternative Regional Water Plan, proposes a comprehensive integration of recharge enhancement and recirculation to maximize supply available from the Edwards Aquifer. One test for a maximized supply is conditioned on not allowing an increase in pumpage to reduce flow from Comal Springs below baseline conditions (400,000 acft/yr of permitted pumpage); and, a second test maintains a minimum flow from Comal Springs at 60 cfs (which is not subject to diversion for recirculation).

The objectives of this plan are to be accomplished through:

- 1. Developing all reasonably economical recharge enhancement options;
- Increasing recharge to the aquifer by diverting unappropriated flow at Lake Dunlap and recirculating enhanced springflow from Comal Springs back to streams and recharge structures on the Edwards Aquifer Recharge Zone in Bexar, Medina, and Uvalde Counties; and
- 3. Transferring groundwater from west to east to maintain water levels, municipal pumpage, and springflow in the eastern part of the aquifer during drought conditions.

The following simulations are proposed to determine the maximized water supply for this recharge and recirculation alternative. Two tests, as described above, will be performed for each Run.

- Run 1: Include all recharge enhancement features, voluntary transfer of Edwards irrigation rights to municipal use, and transfer and recirculate available water from Lake Dunlap to the recharge zone in Bexar, Medina, and Uvalde Counties;
- Run 2: Include same recharge enhancement and recirculation features in Run 1 and add the feature of transferring all the available flow from Lake Dunlap to Cibolo Creek when flow from Comal Springs approaches critical conditions (assumed to be about 150 cfs);
- Run 3: Include same recharge enhancement and recirculation features in Run 1 and 2
  and add the feature of transferring groundwater from the western part of the aquifer to
  Cibolo Creek when flow from Comal Springs approaches critical conditions (assumed to
  be about 150 cfs); and
- Run 4: Include same recharge enhancement and recirculation features in Run 1, 2, and 3
  and add a feature of transferring groundwater from the western part of the aquifer to
  Bexar County when flow from Comal Springs approaches critical conditions (assumed to
  be about 150 cfs).

The following water supply options are included in the Recharge & Recirculation Alternative Regional Water Plan (in no particular order):

- 1. Demand Reduction / Conservation (L-10)
- 2. Edwards Irrigation Transfers (L-15)
- 3. Edwards Recharge Type 2 Projects (L-18a)
- 4. Guadalupe River Diversion to Recharge Zone (G-30)
- 5. Medina Lake Recharge Enhancement (S-13B)
- 6. Edwards Aquifer Recirculation Systems
- 7. Carrizo Aquifer Gonzales & Bastrop Counties (CZ-10D)
- 8. Carrizo Aquifer Local Supply (SCTN-2a)

- 9. Canyon Reservoir (G-15C)
- 10. Wimberley and Woodcreek Canyon (G-24)
- 11. Lockhart Reservoir (G-21)
- 12. Trinity Aquifer Optimization (SCTN-8)
- 13. Rainwater Harvesting (SCTN-9)
- 14. Weather Modification (SCTN-5)
- 15. Brush Management (SCTN-4)
- 16. Simsboro Aquifer (SCTN-3c)
- 17. SAWS Recycle Program
- 18. Transfers of Conserved Irrigation Water (L-10 Irr) to Bexar County Municipal Pumpage
- 19. Term Pumpage Permits
- 20. SAWS Aquifer Storage & Recovery (SCTN-1a)

# Recharge and Recirculation Alternative Regional Water Plan Summary of Key Information for South Central Texas Regional Water Planning Group

## Quantity, Reliability, and Cost

- Plan includes management supplies to meet projected needs, ensure reliability, and maintain springflow, resulting in a quantity of additional water supplies sufficient to meet projected needs for municipal, industrial, steam-electric power, and mining uses only through the year 2050.
- Unit cost is below the average of the five alternative plans and the Regional Water Plan.

#### **Environmental Factors**

- Greatest decrease in median annual streamflow in the Guadalupe River at Cuero and at the Guadalupe River Saltwater Barrier among the five alternative plans and the Regional Water Plan.
- Greatest concerns with respect to Endangered & Threatened Species among the five alternative plans and the Regional Water Plan.
- Least concerns with Water Quality & Aquatic Habitat among the five alternative plans and the Regional Water Plan.

### Impacts on Water Resources

- No unmitigated reductions in water available to existing water rights.
- Long-term reductions in water levels in the Carrizo Aquifer in Gonzales and Bastrop Counties.

#### Impacts on Agriculture and Natural Resources

- Major commitment to municipal and irrigation water Demand Reduction (Conservation) (L-10).
- Includes Brush Management (SCTN-4) and Weather Modification (SCTN-5).
- Inclusion of water supply options to meet projected irrigation needs in full is estimated to be economically infeasible at this time. Weather Modification (SCTN-5) assists irrigation and dry-land agriculture (crops and ranching).
- Includes maximum potential voluntary transfer of Edwards Aquifer irrigation permits to municipal permits through lease or purchase.
- Includes Medina Lake Recharge Enhancement (S-13B) which reduces or eliminates water supplies from the Medina Lake System for irrigation in Bexar, Medina, and Atascosa Counties.

#### Other Relevant Factors per SCTRWPG

- Greatest percentage of time during which Critical Period Management Rules require reductions in municipal pumpage from the Edwards Aquifer among the five alternative plans and the Regional Water Plan.
- Simulated Edwards Aquifer levels well below the lowest on record at the Bexar County monitoring well (J-17) raising significant concerns regarding feasibility.

### Comparison of Strategies to Meet Needs

 Selection of water supply options comprising the alternative plan based on integration of recharge enhancement and recirculation to maximize supply available from the Edwards Aquifer, preferences expressed by planning units, and closest available supply.

### **Interbasin Transfer Issues**

- Projected non-irrigation needs in basin(s) of origin are met throughout the planning period.
- Plan includes two interbasin transfers: 1) Recirculation Systems from the Guadalupe River near Lake Dunlap and the Blanco River near Kyle to the outcrop of the Edwards Aquifer in the San Antonio and Nueces River Basins; and 2) Diversions from the Guadalupe River at Comfort to the Medina River Basin.

# Third-Party Impacts of Voluntary Redistribution of Water

- Potential positive or negative effects of Edwards Irrigation Transfers (L-15).
- Lower water levels in some portions of the Carrizo Aquifer.

## Regional Efficiency

- Edwards Irrigation Transfers (L-15) require no new facilities. Transferred water would likely be available at or very near locations having projected municipal, industrial, steam-electric power, and mining needs in Uvalde, Medina, Atascosa, and Bexar Counties.
- Recirculation Systems provide for recovery and recirculation of enhanced Comal springflow resulting from implementation of Edwards Recharge – Type 2 Projects (L-18a), Medina Lake
   Recharge Enhancement (S-13B), and Guadalupe River Diversions to Recharge Zone (G-30).
- Consider reduced transmission capacity in the Recirculation Systems and elimination of Guadalupe River Diversions to Recharge Zone (G-30) to moderate unit cost.

## **Effect on Navigation**

• Not applicable.

# South Central Texas Region, Recharge & Recirculation Alternative – TWDB Evaluation Criteria Summary

Management Strategy	Quantity (acft/yr)	Reliability ²	Cost (\$/acft) ³	T	Environmental Factors		Impacts on Water Resources	l I	npacts on Agricultural and Natural Resources	T	Other Relevant Factors per SCTRWPG
Municipal Demand Reduction (Conservation) (L-10 Mun.)	44,566	Firm	\$173	•	None. Supply developed through deman reduction.	•	Slight reductions in treated effluent discharge.	•	Fewer water management strategies necessary to meet projected needs.	•	Conservation is a central element of the Plan.
Edwards Irrigation Transfers (L-15)	81,000	Firm	. \$80	•	None. Supply developed without new farilities	•	Reductions in springflow due to relocation of pumpage closer to springs.	•	Plan includes 100 percent of potential of max. voluntary transfer through lease or purchase.	•	Encourages beneficial use of available rights.
Transfer of Conserved Irrigation Water (L-10 Irr) to Bexar County Municipal Pumpage	30,531	Firm	\$1	•	None. Supply developed through deman reduction.	•	Reductions in springflow due to relocation of pumpage closer to springs.	•	Installation of LEPA systems on 53 percent of applicable acreage in Uvalde, Medina, & Bexar.	•	Consistent with conservation focus of Plan.
Edwards Aquifer Recirculation Systems (Recirculation System, Edwards Recharge – Type 2 Projects (L-18a), Medina Lake Recharge Enhancement (S-13B), & Guadalupe River Diversion to Recharge Zone (G-30))	227,080	Firm	\$689	•	Concerns with endangered & threatened species, habitat, cultural resources, and T?WD Ecologically Unique Stream Segment.	•	Reduced Comal Springs discharge and Guadalupe River flows.  Bexar County aquifer levels well below record lows.  Limited on streams with Recharge Dams, as most are located on frequently dry streams. Increased lake levels in Medina Lake Reduced streamflow below Guadalupe River Diversions.	•	Uncertain effects on natural performance of Edwards Aquifer.	•	High percentage of time in drought contingency.  Numerous significant regulatory, legal, institutional, and technical uncertainties.  Mitigation of impacts on firm yield of Choke Canyon Res. / Lake Corpus Christi System.  Requires upstream contract for Canyon Reservoir.
Lockhart Reservoir (G-21)	6,048	Firm	\$1,361	•	Concerns regarding habitat & cultural resources.	•	Reduced streamflow immediately below dam.	•	Minimal.	:	Questions regarding economic feasibility.  Strong local government support.
Trinity Aquifer Optimization (SCTN-8)	390	Firm	\$1,885	•	Concerns with water quality & aquatic habitat.	•	Minimal reductions in instream flow.  Locally increased aquifer levels.	•	Minimal, if any.		outing rocal government support.
Simsboro Aquifer (SCTN-3c)	55,000	Firm	\$844	•	Concerns with endangered & threatened species, habitat, and cultural resources.		Long-term reductions in aquifer levels.  Minimal reductions in instream flow at outcrop.  Potential effects on discharge of small springs.	•	Minimal, if any.	:	Beneficial use of groundwater now unused. Planned Bastrop Co. supply for Region L exceeds 2030 availability per Region K.
Canyon Reservoir – River Diversion (G-15C)	15,000	Firm	\$794	•	Minimal. Canyon Reservoir is an existini resource.	•	Increased instream flows associated with downstream deliveries of water supply.	•	Not applicable.	:	Encourages beneficial use of existing reservoir. Recreational benefits with downstream delivery.
Canyon Reservoir – Wimberley & Woodcreek (G-24)	1,048	Firm	\$1,586	•	Minimal. Pipeline could encounter endargered or threatened species habitat.	•	Minimal, if any.	•	Not applicable.	•	Encourages beneficial use of existing reservoir.
Carrizo Aquifer - Gonzales & Bastrop (CZ-10D) ⁵	58,500	Firm	\$1,066	•	Minimal. Pipeline could encounter cultu al resource sites.		Long-term reductions in well levels.  Some reductions in instream flow at outcrop.  Potential effects on discharge of small springs.	•	Minimal, if any.	•	Planned withdrawals in excess of that expresser in policies of underground water conservation districts.
Carrizo Aquifer - Local Supply (SCTN-2a)	13,700	Firm	\$343	•	Minimal, if any.	•	Modest long-term reductions in aquifer levels.	•	Minimal, if any.	$\vdash$	
SAWS Recycled Water Program (SAWS)	52,215	Firm	\$395	•	None. Water supply derived from increaed volumes of treated wastewater.	•	Minimal, if any.	•	Not applicable.	•	Encourages beneficial use of available resource
Purchase of Water From Major Provider (PMP)	8,000	Firm	\$877	•	Minimal, if any. Supply developed as pat of other water management strategies.	1.	Minimal, if any.	•	Not applicable.		
Aquifer Storage & Recovery (ASR) – (SCTN-1a)	Unquantified	Firm	Unquantified	•	Minimal. Pipeline could encounter impotant habitat or encounter cultural resource site.	•	Reduced peak summer pumpage from Edwards Aquifer increases aquifer levels and springflow.	•	Not applicable.	•	SAWS South Bexar County ASR presently in implementation phase.
Brush Management (SCTN-4)	Unquantified	Unknown	Unquantified	•	Concerns regarding endangered & threat red species, vegetation & wildlife habitat, an cultural resources.	•	Potential benefit to Edwards Aquifer due to increased water for recharge.	•	Potential improvement of pasture for grazing.	•	Additional studies needed to determine quantity of dependable supply during drought
Weather Modification (SCTN-5)	Unquantified	Unknown	Unquantified	•	Potential increases in water supply for willife habitat.		Potential increases in rainfall, runoff, and aquifer recharge.	•	Provides water for irrigated and dry-land agriculture (crops & ranching).	•	Concerns regarding increased flood potential.
Rainwater Harvesting (SCTN-9)	Unquantified	Unknown	Unquantified	•	Minimal, if any.	<u> •</u>	Minimal, if any.	•	Not applicable.	•	Consistent with conservation focus of Plan
Small Aquifer Recharge Dams	Unquantified	Unknown	Unquantified	•	Small potential effects on habitat.	•	Potential increases in local aquifer levels.	•	Minimal, if any.		THE TANK THE PROPERTY OF A PAIL
Term Pumpage Permits	Unquantified	Unknown	Unquantified	•	Minimal, if any.	•	Unknown at this time.	•	Unknown at this time.	<del>                                     </del>	<del></del>
Total of New Supplies	593,078										

Management Strategy		Comparison of Strategies to Meet Needs		Interbasin Transfer Issues		Third-Party Impacts of Voluntary Transfers		Regional Efficiency		Effect on Navigation
Municipal Demand Reduction (Conservation) (L-10 Mun.)	1:	Low unit cost. Inherent environmental benefits.	٠	Not applicable.	•	Not applicable.	•	Implementable throughout the region.	•	None
Edwards Irrigation Transfers (L-15)	•	Low unit cost.	•	Not applicable.	•	Maximum transfer may have potential socio- economic impacts to third parties.	•	Requires no new facilities.	•	None
Transfer of Conserved Irrigation Water (L-10 Irr) to Bexar County Municipal Pumpage	•	Low unit cost.	•	Not applicable.	•	Limited transfer allows irrigators to install high efficiency systems so irrigation can continue at present levels and avoid impact to local economy.	•	Requires no new facilities other than LEPA equipment on farms.	4	None
Edwards Aquifer Recirculation Systems (Recirculation System, Edwards Recharge - Type 2 Projects (L-18a), Medina Lake Recharge Enhancement (S-13B), & Guadalupe River Diversion to Recharge Zone (G-30))	•	Moderate unit cost, with substantial initial investment.	•	TNRCC Interbasin Transfer permits required.	•	Not applicable	•	Provides for recovery and recirculation of enhanced springflow from various recharge enhancement projects.	•	None
Lockhart Reservoir (G-21)	•	High unit cost.	•	Not applicable.	•	Not applicable	•	Shared pipeline alignment with Lower Guadalupe River Diversion (SCTN-16)	•	None
Trinity Aquifer Optimization (SCTN-8)	1.	High unit cost.	•	Not applicable.			•	Implementable at various locations.	•	None
Simsboro Aquifer (SCTN-3c)	•	Moderate unit cost.	•	Not applicable.	•	Limited transfer to avoid potential socio- economic impacts to third parties.	•	Beneficial use of groundwater presently produced, but unused.	•	None
Canyon Reservoir - River Diversion (G-15C)	•	Moderate unit cost.	٠	Not applicable.	1.	Not applicable.	•	Significant additional surface water supply without construction of a new reservoir.	•	None
Canyon Reservoir - Wimberley & Woodcreek (G-24).	1.	High unit cost, but options to meet needs are limited.	•	Not applicable.	•	Not applicable.	•	Additional surface water supply without construction of a new reservoir.	•	None
Carrizo Aquifer - Gonzales & Bastrop (CZ-10D) ³	•	Moderate to high unit cost.	•	Not applicable.	•	Transfer rate could have potential socio- economic impacts to third parties.	•	New supply reasonably proximate to Comal, Guadalupe, and Hays Counties.	•	None
Carrizo Aquifer Local Supply (SCTN-2a)	•	Low unit cost.	•	Not applicable.	•	Not applicable.	•	New supply proximate to points of need.	•	None
SAWS Recycled Water Program (SAWS)	•	Low to moderate unit cost.	•	Not applicable.	•	Not applicable.	•	New supply proximate to points of need.	•	None
Purchase of Water From Major Provider (PMP)	•	Low to moderate unit cost.	•	Not applicable.	•	Not applicable.	•	Economy of participation in regional projects.	•	None
Aquifer Storage & Recovery (ASR) – (SCTN-1a)	•	Effective means of reducing peak summer pumpage from the Edwards Aquifer.	•	Not applicable.	•	Not applicable.	•	Increases reliability of current supply from the Edwards Aquifer.	•	None
Brush Management (SCTN-4)	•	Insufficient information at this time.	•	Not applicable.	1.	Not applicable.	•	May contribute positively to storage and system management of supplies.	•	None
Weather Modification (SCTN-5)	•	Potentially feasible management strategy to meet a portion of projected irrigation needs.	•	Not applicable.	•	Not applicable.	•	May contribute positively to storage and system management of supplies.	•	None
Rainwater Harvesting (SCTN-9)	•	High unit cost; comparable to domestic well.	•	Not applicable.	1.	Not applicable.	•	Implementable throughout the region.	•	None
Small Aquifer Recharge Dams	•	High unit cost.	•	Not applicable.	•	Not applicable.	•	Implementable throughout the region.	•	None
Term Pumpage Permits	•	Insufficient information at this time.	•	Not applicable.	•	Not applicable.		Insufficient information at this time.	•	None

of underground water conservation districts.

Notes:

1) Quantity based on full implementation and utilization of new supplies in year 2050.

2) Firm reliability indicates that new supply is dependable in a drought of record with full implementation of the Alternative Plan.

3) Unit cost based on full utilization of supply at ultimate capacity of planned facilities and includes treatment and distribution facilities necessary to meet peak daily needs.

4) Management strategies in the implementation phase include Schertz-Seguin Water Supply Project, Western Canyon Regional Water Supply Project, Hays/IH35 Water Suply Project, Lake Dunlap WTP Expansion and Mid-Cities Project, and GBRA Canyon Reservoir Contract Renewals. Supplies associated with these management strategies were cound as current supply in the technical evaluation of alternative regional water plans.

5) Subsequent to the technical evaluation of alternative regional water plans, quantity associated with this management strategy was limited in the Regional Water Plan in vist of policies of independent water conservation districts.



# Recharge & Recirculation Alternative Regional Water Plan Annual Cost of Cumulative Additional Water Supply



Recharge & Recirculation Alternative Regional Water Plan Cumulative Additional Water Supply



# Recharge and Recirculation Alternative Regional Water Plan Atascosa County



South C	entral Texas Region						Co	unty = A	tascosa
County S	Summary of Projected Water Needs (Shor	tages) and V	later Man	agement	Strategie	8	Ü	ser Grou	p(s) = al
Projector	d Water Needs (acft/yr)								
Fiojectet	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
				366					NOTES
	Municipal Industrial		325 0		401 0	468 0	530 0	587	
	Steam-Electric		0			0	1,504	8,504	
	Mining		<u>ŏ</u>			995	1,109	1,239	-
	Irrigation		38,418		35,170	43,726	42,190	40,713	
	Total Needs		38,743		35,571				
						45,189	45,333	51,043	
	Mun, Ind, S-E, & Min Needs		325	366	401	1,463		10,330	
	Irrigation Needs		38,418	36,718	35,170	43,726	42,190	40,713	
Water Ms	anagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)	July 1919	356	384	411	259	300	319	110103
L-15 (Mail.)	Edwards Impation Transfers	81,000	500	500	500	500	700	700	2, 3, 4
SCTN-2a	Carrizo Aquifer - Local Supply	0.,000				1,000	3,000	10,000	<del>2, 3, 4</del> 5, 6
SCTN-4	Brush Management	ļ							
SCTN-5 SCTN-9	Weather Modification Rainwater Harvesting						<b>-</b>		
2C114-8	Small Aquifer Recharge Dams		<del></del>						<del></del>
L-10 (lrr.)	Demand Reduction (Conservation)		3,692	3,692	3,692	3,692	3,692	3,692	<u>/</u> 8
L-10 (III.)	Total New Supplies		4,548	4,576	4,603	5,451	7,692	14,711	
	Total New Supplies		4,040	4,57	4,005	0,101	1,032	14,7 1 1	
	Total System Mgmt. Supply / Deficit		-34,195	-32,508	-30,968	-39,738	-37,641	-36,332	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		531	518	510	296	857	689	
	Irrigation System Mgmt. Supply / Deficit		-34,726	-33,026	-31,478	-40,034	-38,498	-37,021	
Notes:									
•	Candidate New Supplies shown for year 2000 are iden					e immediate	ly.		
1	Demand Reduction (Conservation) strategies assumed	l largely reflected	in projected	water demar	ıds.				
2	Candidate New Supply to be shared among Uvalde, M	edina, Atascosa,	and Bexar C	ounties. Sup	ply may not	be reliable i	n drought.		
3	Pursuant to draft EAA Critical Period Management rule	s, Candidate Nev	Supply rep	resents appro	oximately 85	percent of			
	the estimated maximum potential annual transfer (95,4	30 acft) based on	Proposed P	ermits prorat	ed to 400,00	0 acfl/yr.			
4	Additional Edwards supply is for City of Lytle.								
5	Additional Carrizo supply is for Steam-Electric and Min	ing use.		1			1		
6	Early implementation of facilities assumed in cost esting	nation to ensure s	ufficient sup	bih dnijud qu	ught.				
7	Option expected to provide additional water supply in n	nany years, but d	ependable si	upply during	arought is pr	esently unqu	entified.		
8	Estimates based upon use of LEPA systems on 50 per	cent of acreages	imigated in 1	997, With COI	iservation at	20 percent of	or Impation a	pplication rat	<b>e</b>

# Recharge and Recirculation Alternative Regional Water Plan Bexar County



South C	entral Texas Region						C	ounty =	Bexa
County Su	ımmary of Projected Water Needs (Shorta	ges) and Wa	ter Manaç	gement S	trategies			ser Grou	
Projected	Water Needs (acft/yr)							_	
riojecteu	User Group(s)	<del></del>	2000	2010	2020	2030	2040	2050	Notes
	Municipal		122,867	154,495	198,301	262,070		353,309	110108
	Industrial		122,007	0	130,301	1,430	4,759	8,192	
	Steam-Electric		0	Ö	Ö	0		0,102	
	Mining		4,983	4,936	5,201	5,406		5,962	
	Irrigation		22,575	20,374	19,585	19,015		17,368	
	Total Needs		150,405	179,805		287,921		384.831	
	Mun, Ind, S-E, & Min Needs		127,830						
	Irrigation Needs		22,575					17,368	
Water Mar	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
	Demand Reduction (Conservation)		33,528	42,509	41,210	38,533	38,834	40,934	
L-15	Edwards Impation Transfers	81,000	50,000	55,000	60,000	65,000		71,300	2, 3
L-18a	Edwards Recharge - Type 2 Projects	21,577	13,451	21,577	21,577	21,577	21,577	21,577	
G-30	Guadalupe River Diversion to Recharge Zone	3,902	3,902	3,902	3,902	3,902	3,902	3,902	- 4
S-13B	Medina Lake - Recharge Enhancement	8,136	8,138	8,136	8,136	8,136	8,136	8,138	4
	Recirculation Systems			193,465	193,465	193,465	193,465	193,465	5
	SAWS Recycled Water Program			19,826	26,737	35,824	43,561	52,215	6,7
SCTN-3c	Simsboro Aquifer	55,000	55,000	55,000	55,000	55,000	55,000	55,000	8
L-10 (lm.)	Transfer of Conserved Irrigation Water	30,531	30,531	30,531	30,531	30,531	30,531	30,531	10
SCTN-1a	SAWS ASR								
SCTN-4	Brush Management								9
SCTN-5	Weather Modification								9
SCTN-9	Rainwater Harvesting								
	Small Aquifer Recharge Dams								8
L-10 (lrr.)	Demand Reduction (Conservation)								10
	Total New Supplies		194,548	429,948	440,558	449,968	465,006	477,060	
	Total System Mgmt. Supply / Deficit		44,143				120,584	92,229	
Mun, Ind, S	-E, & Min System Mgmt. Supply / Deficit		68,718					109,597	11
	Irrigation System Mgmt. Supply / Deficit		-22,575	-20,374	-19,585	-19,015	-18,385	-17,368	
Notes:									
•	Candidate New Supplies shown for year 2000 are	identified for pr	iority impler	nentation, t	out will not b	oe available	immediate	ly.	
1	Demand Reduction (Conservation) strategies assi								
2	Candidate New Supply to be shared among Uvalo	le, Medina, Atas	cosa, and f	Bexar Coun	itles. Suppl	y may not l	be reliable li	n drought.	
3	Pursuant to draft EAA Critical Period Managemen								
	the estimated maximum potential annual transfer	(95,430 acft) ba	sed on Prop	osed Perm	rils prorated	l to 400,000	Dacflyr.		
	Supply values shown for this option are based on		chnical eval	uations. O	<u>ption was si</u>	mulated in	combination	n with	
4				i					
	Recirculation Systems for alternative plan evaluati	ons.							
5	The basis of this alternative plan is to meet the pro-	ected needs o				recirculatio	n projects.	ine	
5	The basis of this alternative plan is to meet the pro- Recirculation Systems were simulated in combina	pjected needs or tion with Option	s L-18a, G-	30, and S-1	38.			ine	
5	The basis of this alternative plan is to meet the pro Recirculation Systems were simulated in combina Current SAWS Recycled Water Program is include	pjected needs of tion with Option and in the 24,941	s L-18a, G-	30, and S-1 rsumplive r	euse) in esi	limated nee	rds.		
5 6 7	The basis of this alternative plan is to meet the pro- Recirculation Systems were simulated in combina Current SAWS Recycled Water Program is including Future use of recycled water for non-potable uses	pjected needs of tion with Option and in the 24,941	s L-18a, G-	30, and S-1 rsumplive r	euse) in esi	limated nee	rds.		
5 6 7 8	The basis of this alternative plan is to meet the pro- Recirculation Systems were simulated in combina Current SAWS Recycled Water Program is includ- Future use of recycled water for non-potable uses Effects on regional aquifer levels to be quantified.	pjected needs o tion with Option ed in the 24,941 and based on o	s L-18a, G- activyr (cor poal of meet	30, end S-1 sumplive r ling 20 perc	3B. euse) in est ent of SAW	limated nea /S projected	ds. d water dem	and.	
5 6 7 8 9	The basis of this alternative plan is to meet the pro- Recirculation Systems were simulated in combina Current SAWS Recycled Water Program is includ- Future use of recycled water for non-potable uses Effects on regional aquifer levels to be quantified. Option expected to provide additional water supply	pjected needs o tion with Option ed in the 24,941 and based on c y in many years	s L-18a, G- activyr (cor goal of meet but depen-	30, and S-1 sumplive r ling 20 perc dable supp	38. euse) in est cent of SAW	limated nee /S projected j ought is pre	ds. d water dem	and.	
5 6 7 8	The basis of this alternative plan is to meet the pro- Recirculation Systems were simulated in combina Current SAWS Recycled Water Program is includ- Future use of recycled water for non-potable uses Effects on regional aquifer levels to be quantified. Option expected to provide additional water suppli- Estimates based upon use of LEPA systems on 8	pjected needs o tion with Option ed in the 24,941 and based on o y in many years o percent of acr	s L-18a, G- activyr (cor poal of meet but depen- eages imga	30, and S-1 sumplive r ling 20 perc dable supplited in 1997	38. euse) in esi cent of SAW by during dra dry with conse	limated nas /S projected bought is pre	ds. d water dem sently unqu	and. antified.	9).
5 6 7 8 9	The basis of this alternative plan is to meet the pro- Recirculation Systems were simulated in combina Current SAWS Recycled Water Program is includ- Future use of recycled water for non-potable uses Effects on regional aquifer levels to be quantified. Option expected to provide additional water supply	pjected needs on the pilon with Option with Option ed in the 24,941 and based on a pilon with the pilon with th	s L-18a, G- act/yr (cor pal of meet but depen- eages irrigation	30, and S-1 sumplive r ling 20 perc dable supplited in 1997 n permitted	38. euse) in est cent of SAW ly during dra , with conse	ilmated nase/S projected S pro	ds. d water dem esently unqu 40 percent of	and. antified. If irrigation bal pumpag	в).

# Recharge and Recirculation Alternative Regional Water Plan Caldwell County



South Ce	entral Texas Region							County =	Caldwell
County St	immary of Projected Water Needs (Shortages) a	nd Water Mana	agement St	rategies					up(s) = all
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0	188	393	668	714	737	
	Industrial		0	0	0	0	0	0	
	Steam-Electric		0	0	0	Ö	0	0	
	Mining		0	0	0	0	0	0	
	Irrigation		0	0	0	0	0	0	
	Total Needs		0	188	393	668	714	737	
	Mun, Ind, S-E, & Min Needs		0	188	393	668	714	737	
	Irrigation Needs		0	0	0	0	0	0	
						·			
Water Mar	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		195	208	218	82	93	104	1
G-21	Lockhart Reservoir			6,048	6,048	6,048	6,048	6,048	2
						Į		<del></del>	
<u> </u>	Conflict Var Dankara Danka								
1000	Small Aquifer Recharge Dams Demand Reduction (Conservation)								
L-10 (lm.)	Demano Reduction (Conservation)								
	<del></del>								
-	Total New Supplies		195	6,254	6,266	6,130	6,141	6,152	
	Total New Supplies		100	0,204	0,200	0,130	0,147	0,102	
	Total System Mgmt. Supply / Deficit		195	6,086	5,873	5,462	5,427	5,415	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		195	6,066	5,873	5,462	5,427	5,415	
	Irrigation System Mgmt. Supply / Deficit		193	0,000	3,613	0,462	0	0,413	<del></del>
	intigation System inginit. Supply / Delicit		U U	V _I	V)	U	- 01	<u>_</u>	
Noton									
Notes:	Damand Reduction (Conservation) strategies assumed largely r	eflected in projected	l water deman	ne l	<del></del>				
	Water supply for City of Lockhart and/or other users downstream		- 113(0) UG:11811	<del></del>					
3	Option expected to provide additional water supply in many year		nonly during d	rought is prese	ntiv unquantifi	ed.	<del>-</del>	·	
<u> </u>	Inhini avhence in highing againstial states sobbit in utalit sea	at an anhangana		H-11 10 P1001	y wirdwellell	<del></del>			

# Recharge and Recirculation Alternative Regional Water Plan Comal County



South Ce	entral Texas Region							County	= Comal
County St	ummary of Projected Water Needs (Shortages)	and Water Ma	nagement	Strategies				User Gro	up(s) = all
Designate of	Mister Needs (softler)								
Projected	Water Needs (acft/yr)		2000	2010	2020		2040	0050	- N-4
	User Group(s)					2030	2040	2050	Notes
	Municipal		2,289	5,049	10,487	18,282	25,205	33,082	
	Industrial		1,388	1,425	1,486	1,737	2,009	2,289	<del></del>
	Steam-Electric	··· · <del>-</del>	5,570	5,464	0 5,628	5,798	0	0 0004	
<del></del>	Mining Irrigation		30	5,404 14	5,028	5,785	3.590	2,224	
	Total Needs					07.045		0	
			9,277	11,952	17,601	25,815	30,804	37,575	
	Mun, Ind, S-E, & Min Needs		9,247	11,938	17,601	25,815	30,804	37,575	
	Irrigation Needs		30	14	0	.0	0	0	
Water Ma	nagement Strategies (acft/yr)	Candidate	}						
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		616	718	848	718	824	942	110100
G-15C	Canyon Reservoir - River Diversion	15,000	15,000	15,000	15,000	15,000	15,000	15,000	
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop	90,000			3,500	12,000	16,500	23,000	3, 4, 5
							- 12/222		
	Small Aquifer Recharge Dams			i					6
L-10 (lrr.)	Damand Reduction (Conservation)								
	Total New Supplies		15,616	15,718	19,348	27,718	32,324	38,942	
<u>-</u> .	Table Out and Complete Deficial		0.000	0.700	4 = 4=1	4 000	4 700		
	Total System Mgmt. Supply / Deficit		6,339	3,766	1,747	1,903	1,520	1,367	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		6,369	3,780	1,747	1,903	1,520	1,367	
	Irrigation System Mgmt. Supply / Deficit		-30	-14	0	0	0	0	
Notes:									
•	Candidate New Supplies shown for year 2000 are identified for	r priority implements	ation, but will n	ot be available	immediately.				
1	Demand Reduction (Conservation) strategies assumed largely		ed water dema	inds.					
2	Portion of Canyon firm yield (with amendment) diverted below	Seguin.							
3	Candidate New Supply to be shared among Comal, Guadalup	e, and Hays Countie	es. Effects on	regional aquif	er levels to be	quantified.			
4	Portion of 90,000 activyr available from northern Gonzales and	southern Bastrop C	Conuțies nudei	CZ-10D.					
5	Early Implementation of facilities assumed in cost estimation to	ensure sufficient s	upply during d	rought.		ive a			[
6	Option expected to provide additional water supply in many ye	ars, but dependable	supply during	arought is pre	isently unquan	uned.	1		



South Ce	entral Texas Region							County:	= Dimmi
County Si	ummary of Projected Water Needs (Shortages	) and Water M	lanagemer	t Strategie	BS			User Gro	up(s) = al
Projected	Water Needs (acft/yr)					1			
riojecieu	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
			138	405					Notes
	Municipal Industrial		138	405	649	1,054	1,479	1,959	
	Steam-Electric		0	0	- 0	0	0	0	
<del></del>	Mining		0		<del></del>	915	925	949	
	Irrigation		0	<del>   </del>		2,133	1,737	1.331	
	Total Needs		138	405	649				
						4,102	4,141	4,239	
<del></del>	Mun, Ind, S-E, & Min Needs		138	405	649	1,969	2,404	2,908	
	Irrigation Needs		0	0	0	2,133	1,737	1,331	
							<u> </u>		
	nagement Strategles (acft/yr)	Candidate			l				
ID#	Description	New Supply	2000°	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		131	144	156	104	118	133	
CTN-2a	Carrizo Aquifer - Local Supply		500	1,000	1,000	2,500	3,000	3,500	2,
				1					
SCTN-4	Brush Management								
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)				1				
	Total New Supplies		631	1,144	1,156	2,604	3,118	3,633	
	Total System Mgmt. Supply / Deficit		493	739	507	-1,498	-1,023	-606	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		493	739	507	635	714	725	
	Deficit				•••	350	'''	725	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	-2,133	-1,737	-1,331	
	migation system maint supply? Dencit		01	<u> </u>	<u> </u>	-2,100	-1,131	-1,331	
Notes:			1						
•	Candidate New Supplies shown for year 2000 are identified	or priority impleme	ntation, but wil	not be availa	bie immediate	Iv.	<del></del>	<u>-</u>	
1	Demand Reduction (Conservation) strategies assumed large	ly reflected in prois	cted water der	nands.		·			
<u>.</u>	Additional well(s) for Carrizo Springs and Mining supply.	,	1					<del></del>	
3	Early Implementation of facilities assumed in cost estimation	to ensure sufficient	supply during	drought.	<del></del>	<del></del>	<del></del>		
	Option expected to provide additional water supply in many y					- 10	<del></del>		



South Ce	entral Texas Region				-			Cour	ty = Frio
County Su	ummary of Projected Water Needs (Shortages)	and Water Ma	nagement	Strategies				User Gro	up(s) ≈ all
Projected	Water Needs (acft/yr)								
i rojecteu	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0		0	ō	0		
	Industrial	-	ŏ		<u>ö</u>	Ö	Ö	0	
	Steam-Electric		Ō	Ö	0	Ö	ŏ	ŏ	
	Mining		0	0	0	Ö	0	ŏ	
	Irrigation		71,128	67,646	64,365	76,505	73,519	70,662	
	Total Needs		71,126	67,646	64,365	76,505	73,519	70,662	
	Mun, Ind, S-E, & Min Needs		0		0	0	0		
	Irrigation Needs		71,126	67,646	64,365	76,505	73,519	70,662	
	111844011110000		11,120	5. 15 15	2-1,000	10,000	70,010	70,002	
Motor Ma	nagement Strategies (acft/yr)	Candidate			_				
			2000	2010	2020	2030		0000	
ID#	Description	New Supply					2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		184	195	205	116	121	124	1
<del></del>									
				<del></del>					<del></del>
				<del>  </del>	<del>-</del>				
SCTN-4	Brush Management			<del> </del>					
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
301143	Small Aquifer Recharge Dams						~		
L-10 (ln.)	Demand Reduction (Conservation)		5,947	5,947	5,947	5,947	5,947	5,947	
L-10 (M.)	Total New Supplies		6,131		6,152	6,063	6,068	6,071	
	Total New Supplies		0,131	0,172	_0,132	0,003	0,000	0,07 1	
	Total Quaters Mant Quanty / Deficit		64 005	64 604	E0 242	70 442	07.454	04.504	
	Total System Mgmt. Supply / Deficit		-64,995		-58,213	-70,442	-67,451	-64,591	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		184	195	205	116	121	124	
	Deficit		95.455						
	Irrigation System Mgmt. Supply / Deficit		-65,179	-61,699	-58,418	-70,558	-67,572	-64,715	]
Notes:			L	L					
1	Demand Reduction (Conservation) strategies assumed largely	reflected in project	ied water dem	ands.					
2	Option expected to provide additional water supply in many ye	are, but dependabl	e supply during	d acondui is bu	sently unqua	ntified.			
3	Estimates based upon use of LEPA systems on 50 percent of	acreages impated i	n 1997, with c	onservation at	20 percent of	imgation			
	epplication rate.								

# Recharge and Recirculation Alternative Regional Water Plan Guadalupe County



South Ce	entral Texas Region						Co	unty = Gı	
County Su	ummary of Projected Water Needs (Shortages)	and Water Ma	nagement	Strategies				User Grou	ıp(s) = all
Projected	Water Needs (acft/yr)								
<del>-</del>	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		29	23	30	71	87	773	
	Industrial		985	1,204	1,350	1,487	1,692	1,899	<del></del>
	Steam-Electric		0	0	0	Ō	0	0	
	Mining		196	198	200	202	207	213	
	Irrigation		985	879	779	684	594	508	
	Total Needs		2,195	2,304	2,359	2,444	2,580	3,393	
	Mun, Ind, S-E, & Min Needs		1,210	1,425	1,580	1,760	1,986	2,885	
	Irrigation Needs	··	985	879	779	684	594	508	
	1118841011110000		000		170	004	- 004	000	
	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		235	236	236	5	5	6	1
CZ-10D	Carrizo Aquifer - Gonzales & Bastrop	90,000	1,500	1,500	2,000	2,000	2,500	4,500	2, 3, 4
	Small Aquifer Recharge Dams								5
L-10 (lrr.)	Demand Reduction (Conservation)				1				
						ľ			
	Total New Supplies		1,735	1,736	2,236	2,005	2,505	4,508	
	Total System Mgmt. Supply / Deficit		-460	-568	-123	-439	-75	1,113	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		525	311	656	245	519	1,621	
	Deficit			ا'''			١٠٠٠	.,02.	
}	Irrigation System Mgmt. Supply / Deficit		-985	-879	-779	-684	-594	-508	
	irrigation System mynnt Supply / Deficit		-900	-013	-119	-004	-034	•506	
Notes:									
MOIS:	Candidate New Supplies shown for year 2000 are identified for	nrinrity implement	ation but will a	not he avallable	Immediately				
1	Demand Reduction (Conservation) strategies assumed largely				, плинославну. Т				
1	Candidate New Supply to be shared among Comal, Guadalup	and Havs Country	es Filecte on	regional acuif	er levels to be	ouantified			
2	Portion of 90,000 activer available from northern Gonzales and	southern Basima	Counties unde	r C7-10D	J. 131013 to 08	quaninos.	<del></del>		
<u> </u>	Early implementation of facilities assumed in cost estimation to	ensure sufficient s	unniv durino d	rought	<del>-</del>				
5	Option expected to provide additional water supply in many ye	ars, but dependable	supply during	drought is on	sentiv unovan	tified	<del></del>		
<del></del>	Tohing avhacian in higher anguinner seres subbit in ment to	aral ani anharingoni	- cabbit aniiil	ought to but	owing andnou				

# Recharge and Recirculation Alternative Regional Water Plan Hays County



South Ce	entral Texas Region							Count	y = Hays
County Si	ummary of Projected Water Needs (Shortages)	and Water Mar	nagement	Strategies				User Gro	
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		4,325	7,609	10,980	16,349	22,698	29,059	
	Industrial		0	0	0	0	0	0	
	Steam-Electric		0	0	0	0	0	0	
	Mining		84	82	68	55	37	28	_
	Irrigation		0	0	0	0	0	0	
	Total Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Mun, Ind, S-E, & Min Needs		4,409	7,691	11,048	16,404	22,733	29,087	
	Irrigation Needs		0	O	0	0	0	0	
	11118					•	-		-
Water Mai	nagement Strategies (acft/yr)	Candidate						Ī	
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		647	747	873	699	906	1,174	-110100
CZ-10D	Carrizo Aquiler - Gonzales & Bastrop	90,000	4,000	7,000	10,500	16,000	22,000	31,000	2, 3, 4
G-24	Canyon Reservoir	1,048	1,048	1,048	1,048	1,048	1,048	1,048	2, 3, 4
G-24	Cenyon Nosorvon	1,040	1,040		1,040	1,040	1,040	1,040	
								<del></del>	
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)						<del>-</del>		
L-10 (III.)	Scriping (Vedecues) (Serios Vedecus)			i					
									_
	Total New Supplies		5,695	8,795	12,421	17,747	23,954	33,222	
-	Total Gundani Harrid Gunda I Deficial		4 000	4.404	4 070	4 040	4.004	4.400	
	Total System Mgmt. Supply / Deficit		1,286	1,104	1,373	1,343	1,221	4,135	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		1,286	1,104	1,373	1,343	1,221	4,135	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0	0	
Notes:									
•	Candidate New Supplies shown for year 2000 are identified for	r priority implements	ation, but will n	ot be available	immediately.				
1	Demand Reduction (Conservation) strategies assumed largely	reflected in projecte	ed water dema	ends.					
2	Candidate New Supply to be shared among Comal, Guadalup	e, and Hays Countie	s. Ellects on	regional aquife	r levels to be	quantified.			
3	Portion of 90,000 acft/yr available from northern Gonzales and	southern Bastrop C	counties under	CZ-10D.					
4	Early implementation of facilities assumed in cost estimation to	ensure sufficient si	upply during d	rought.					
5	Candidate New Supply for Wimberley and Woodcreek.								
6	Option expected to provide additional water supply in many ye	ars, but dependable	supply during	drought is pre	sently unquan	tified.			

6-28



South Ce	entral Texas Region					·		County =	Kendall
County St	ummary of Projected Water Needs (Shortages	) and Water M	anagemer	nt Strategi	es			User Gro	
<b>Projected</b>	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		1,070	1,580	2,808	4,099	5,578	7,518	
	Industrial		2	3	4	4	5	6	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	0	0	0	0	0	
	Irrigation		0	0	Ö	0		0	
	Total Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Mun, Ind, S-E, & Min Needs		1,072	1,563	2,812	4,103	5,583	7,524	
	Irrigation Needs		0	0	0	0	0,000	7,524	
	ungation reces			0	V				
Water Ma	nagement Strategies (acft/yr)	Candidate							
ID#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		67	71	71	11	11	11	1
	Purchase Water from Major Provider		2,000	2,000	3,000	5,000	6,000	8,000	2, 3
SCTN-8	Trinity Aquifer Optimization	390	390	390	390	390	390	390	
SCTN-4	Brush Management								4
SCTN-5	Weather Modification								4
SCTN-9	Rainwater Harvesting								4
	Small Aquifer Recharge Dams						_		4
L-10 (lrr.)	Demand Reduction (Conservation)								
	Total New Supplies		2,457	2,461	3,461	5,401	6,401	8,401	
	Total System Mgmt. Supply / Deficit		1,385	898	649	1,298	818	877	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		1,385		649	1,298	818	877	
	Deficit		1,505	050	043	1,230		077	
	Irrigation System Mgmt. Supply / Deficit		0	0	Õ	0	0	0	
Notes:									
•	Candidate New Supplies shown for year 2000 are identified f	or priority implemen	ntation, but wi	ll not be availa	ble immediate	ely.			
1	Demand Reduction (Conservation) strategies assumed large	ly reflected in proje	cted water de	mands.					
2	Assumed purchase from Bexar County major provider. Kend	lall County water no	eds are not n	eflected in Bex	car County tab	le.			
3	Early implementation of facilities assumed in cost estimation	to ensure sufficient	supply during	drought.					
		ears, but dependat							



South Ce	entral Texas Region							County =	= Medina
County Su	ımmary of Projected Water Needs (Shortages)	and Water Mar	nagement	Strategies				User Gro	
Projected	Water Needs (acft/yr)								
riojecieu	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
									Mofez
	Municipal		2,015	2,110	2,208	2,427 0	2,582	2,750	
	Industrial Steam-Electric			<del></del>	0	Ö	- 0	0	
	Mining		68	68	70	72	74	76	<del></del>
	Irrigation		98,916	95,268	91,320	92,320	88,925	84,692	
	Total Needs		100,999	97,446	93,596	94,819	91,581		
								87,518	
	Mun, Ind, S-E, & Min Needs		2,083	2,178	2,276	2,499	2,656	2,826	
	Irrigation Needs		98,916	95,268	91,320	92,320	88,925	84,692	
Water Mar	nagement Strategies (acft/yr)	Candidate			_		-	_	
ID#	Description	New Supply	2000°	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		200	205	211	73	76	78	1
L-15 (M.C.I.)	Edwards Irrigation Transfers	81,000	3,000	3,000	3,000	3,000	3.000	3,000	2. 3
				· · · · · · · · · · · · · · · · · · ·					
							·		
SCTN-4	Brush Management								4
SCTN-5	Weather Modification								4
SCTN-9	Rainwater Harvesting								4
	Small Aquiler Recharge Dams			l					4
L-10 (lrr.)	Demand Reduction (Conservation)								5, 6
	Total New Supplies		3,200	3,205	3,211	3,073	3,076	3,078	
	Total System Mgmt. Supply / Deficit		-97,799	-94,241	-90,385	-91,746	-88,505	-84,440	
	Mun, Ind, S-E, & Min System Mgmt. Supply /		1,117	1,027	935	574	420	252	
	Deficit		.,	.,		۱,	,_,		
	Irrigation System Mgmt. Supply / Deficit		-98,916	-95,268	-91,320	-92,320	-88,925	-84,692	
	inigation oystem ingint outpry / bench		-50,010	-50,200	-51,020	-02,020	-00,525	-04,082	
Notoci									
Notes:	Candidate New Supplies shown for year 2000 are identified to	r oriently implements	ation but will o	not he available	immediately	<del></del>		<del></del>	
1	Demand Reduction (Conservation) strategies assumed largety	reflected in protect	ed water dema	ands I	i arminouscially.	<del></del>	<del></del>		
<del>:</del>	Candidate New Supply to be shared among Uvalde, Medina, A	Mascosa, and Reva	Counties. Su	ingly may not i	ne reliable in d	rought	<del></del>	+	
<u>*</u> 3	Pursuant to draft EAA Critical Period Management rules, Cand					· vog·n.		<del></del>	
<del></del>	the estimated maximum potential annual transfer (95,430 acft)	based on Proposed	Permits prore	ated to 400 000	acft/vr.	<del>-</del>	<del></del>		
4	Option expected to provide additional water supply in many ve	ars, but dependable	entrub vlaque	drought is pre	sently unquan	ilified.			
5	Estimates based upon use of LEPA systems on 80 percent of	acreages irrigated in	n 1997, with co	onservation at	10 percent of i	rrigation	<del></del>  -		
<del></del>	application rate, but applicable to only 50 percent of Edwards /	Aquifer Irrigation per	mitted quantiti	85.					
6	Demand Reduction (Conservation) transferred to Bexar Count	y in the R&R Plan					- i		



South C	entral Texas Region							County	= Uvald
County S	ummary of Projected Water Needs (Shortages	) and Water M	anagemer	t Strategic	98		<del></del>	User Gro	
									1
Projected	l Water Needs (acft/yr)					-		_	
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		2,682	3,168	3,493	4,241	4,880	5,609	
<del></del>	Industrial		0	0	0	0	O	0	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	0	0	0	0	Ö	
	Irrigation		75,263	72,798	70,154	71,022	68,880	65,676	
	Total Needs		77,945	75,984	73,647	75,263	73,760	71,285	
	Mun, Ind, S-E, & Min Needs	_	2,682	3,166	3,493	4,241	4,880	5,609	
	Irrigation Needs		75,263	72,798	70,154	71,022	68,880	65,676	
Notes Ma	anagement Stantagles (aufilia)	Candidate							
	nagement Strategles (acft/yr)				2000				11-1
D#	Description	New Supply	2000*	2010	2020	2030	2040	2050	Notes
-10 (Mun.)	Demand Reduction (Conservation)		318	346	371	235	258	283	
L-15	Edwards Irrigation Transfers	81,000	3,000	4,000	4,000	5,000	5,000	6,000	2, 3
				-					
SCTN-4	Brush Management				·····				
CTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
	Small Aquifer Recharge Dams								
L-10 (lrr.)	Demand Reduction (Conservation)								6,
	Total New Supplies		3,318	4,346	4,371	5,235	5,258	6,283	
	Total System Mgmt. Supply / Deficit		-74,627	-71,618	-69,276	-70,028	-68,502	-65,002	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		636	1,180	878	994	378	674	
	Irrigation System Mgmt. Supply / Deficit		-75,263	-72,798	-70,154	-71,022	-68,880	-65,676	
lotes:			4-11		1				
	Candidate New Supplies shown for year 2000 are identified f				<u>pie immediate</u>	iy.			
	Demand Reduction (Conservation) strategies assumed large Candidate New Supply to be shared among Uvalde, Medina,	Atorogo and Co	crea Marer der	nanos.	al he collection!	a draviabl			
	Pursuant to draft EAA Critical Period Management rules, Car								
3	the estimated maximum potential annual transfer (95,430 act								
<del></del>	Early implementation of facilities assumed in cost estimation	<del></del>	<del></del>						
<u> </u>	Option expected to provide additional water supply in many y	debrench tild sneg	ile sunniv dud	na drought is	onesentiv uppri	rantified			
<u> </u>	Estimates based upon use of LEPA systems on 80 percent of	acresoes impated	in 1997, with	conservation	at 40 percent	of infoation	···		
<u>'</u>	application rate, but applicable to only 50 percent of Edwards	Aguifer intestion o	ermitted quan	tities.	1		<del></del>		
,	Demand Reduction (Conservation) transferred to Bexar Cour	ty in the R&R Pian	1		<del></del>			<del></del>	

# Recharge and Recirculation Alternative Regional Water Plan Wilson County



South Ce	entral Texas Region		T					County	= Wilsor
County Su	ımmary of Projected Water Needs (Shortages) a	and Water Ma	nagement	Strategies					up(s) = al
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal	<u>-</u>	0	0	0	0	63	145	
	Industrial		0	0	0	0	0	Ō	
	Steam-Electric		0	0	0	0	0	0	
	Mining		0	0	0	0	0	0	
······································	Irrigation		Ō	0	0	0	0	0	
	Total Needs		0	0	0	0	63	145	
	Mun, Ind, S-E, & Min Needs		0	0	0	0	63	145	
	Irrigation Needs		0	0	0	0	0	0	
Water Mar	nagement Strategies (acft/yr)	Candidate							<del></del>
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		171	183	194	114	122	130	-
SCTN-2a	Carrizo Aquiller - Local Supply						200	200	
SCTN-4	Brush Management								3
SCTN-5	Weather Modification					·			
SCTN-9	Rainwater Harvesting								;
	Small Aquifer Recharge Dams								
L-10 (lm.)	Demand Reduction (Conservation)								
	Total New Supplies		171	183	194	114	322	330	
			454	400	15.1		200		
	Total System Mgmt. Supply / Deficit		171	183	194	114	259	185	
	Mun, Ind, S-E, & Min System Mgmt. Supply / Deficit		171	183	194	114	259	185	
	Irrigation System Mgmt. Supply / Deficit		0	0	0	0	0		· · · - · ·
Notes:			<u>                                     </u>						
1	Demand Reduction (Conservation) strategies assumed largely	reflected in projec	led water demi	ands.					
2	Additional well(s) for Floresville.	, j.,	<u> </u>	l					
3	Option expected to provide additional water supply in many year	ars, but dependabl	e supply during	g drought is pro	esently unquar	ntified.			

# Recharge and Recirculation Alternative Regional Water Plan Zavala County



South Ce	ntral Texas Region								= Zavala
County Su	immary of Projected Water Needs (Shortages)	and Water Mai	nagement	Strategies				User Gro	up(s) = a
Projected	Water Needs (acft/yr)								
	User Group(s)		2000	2010	2020	2030	2040	2050	Notes
	Municipal		0		0	0	0	0	
	Industrial		0		ŏ	ŏ	Ö	Ö	
	Steam-Electric		0	0	ō	ō	Ö	ő	
	Mining		Ö	O	Ö	Ö	ŏ	ŏ	
	Irrigation		80,722	76,589	72,655	88,293	84,673	81,200	
	Total Needs		80,722	76,589	72,655	88,293	84,673	81,200	
	Mun, Ind, S-E, & Min Needs		00,122	7 0,000	12,000	00,230	07,073	01,200	
	irrigation Needs		80,722		72,655	88,293	84,673	81,200	
	111921011110020	, ,	00  -02	1 0,000	1=1000	00,200	04,010	01,200	
Water Mai	nagement Strategies (acft/yr)	Candidate							,
ID#	Description	New Supply	2000	2010	2020	2030	2040	2050	Notes
L-10 (Mun.)	Demand Reduction (Conservation)		190	193	194	90	103	104	
SCTN-4	Brush Management								
SCTN-5	Weather Modification								
SCTN-9	Rainwater Harvesting								
	Small Aquifer Recharge Dams								
L-10 (lm.)	Demand Reduction (Conservation)		6,401	6,401	6,401	6,401	6,401	6,401	
	Total New Supplies		6,591	6,594	6,595	6,491	6,504	6,505	
·									
	Total System Mgmt. Supply / Deficit		-74,131	-69,995	-66,080	-81,802	-78,169	-74,695	-
	Mun, Ind, S-E, & Min System Mgmt. Supply /		190	193	194	90	103	104	
<del></del>	Irrigation System Mgmt. Supply / Deficit		-74,321	-70,188	-66,254	-81,892	-78,272	-74,799	
	angulon oystem maint outphy i benefit		1.41451	-10,100	-00,204	-01,002	-10,212	-1-41100	
Notes:				1		i			
1	Demand Reduction (Conservation) strategies assumed largely reflected in projected water demands.								
<del></del>	Option expected to provide additional water supply in many ye	ars, but dependable	e supply during	drought is pre	sently unquar	ntified.			
3	Estimates based upon use of LEPA systems on 50 percent of	acreages impaled i	n 1997, with c	onservation at	20 percent of	rrigation			
<del>-</del>	application rate.								







# Edwards Aquifer Component of Recharge and Recirculation Regional Water Management Plan

## Summary of Features and Costs

June 28, 2000

#### Scenario 5

- Recirculate from Lake Dunlap at a maximum capacity of 600 cfs to:
  - Medina County (maximum = 200 cfs and first priority)
  - Uvalde County (maximum = 200 cfs and second priority)
  - Bexar County (maximum = 200 cfs and third priority)
- Transfer all Lake Dunlap recirculation to Upper Cibolo Creek when flow in Comal Springs is less than 150 cfs. The transfer to Upper Cibolo Creek is turned OFF when the flow in Comal Springs exceeds 200 cfs.
- Transfer groundwater, at a rate of 150 cfs, from Uvalde County to Upper Cibolo Creek when the flow from Comal Springs is less than 150 cfs. The transfer is turned OFF when the flow from Comal Springs is greater than 200 cfs.
- Transfer groundwater, at a rate of 150 cfs, from Uvalde County to Edwards Aquifer in western Bexar County when the flow from Comal Springs is less than 150 cfs. The transfer is turned OFF when the flow from Comal Springs is greater than 200 cfs.

#### > Surface Water Rights

- Honored
- Enhanced flow from Comal Springs is unavailable for meeting water rights or meeting Environmental Criteria. However, enhanced flow from the other springs is available for water rights and environmental critera.
- The baseline flow from Comal Springs is based on a simulation of 412,312 pumpage without irrigation transfers to Bexar County.

#### Surface Water Supplies

- Edwards Recharge-Type 2 Projects (L-18a: Frio, Sabinal, Verde, Hondo, Cibolo, Blanco, and Indian Creek Pumpover)
- Guadalupe River Diversion to Recharge Zone (G-30) with recharge in NW Bexar County
- Medina Lake Recharge Enhancements (S-13b)
- Blanco River Pump Over to Lake Dunlap (Maximum of 75 cfs)
- Unappropriated Surface Water at Lake Dunlap. Availability for recirculation is subject to making up a deficit between base springflow and scenario springflow. In other words, when flow from Comal Springs is lower with the Alternative Regional Water Plan than during the baseline conditions, the unappropriated flow is first allocated to surface water rights to cover this deficit.

#### Water Transfers

Edwards Irrigation (L-15: 95,000 acft/yr)

- Irrigation Demand Reductions (L-10 (Irr))
- > Other Management
  - ASR
  - Critical Period Management. Only pumpage within the 400K base cap is subjected to reductions.
  - Term Permits (evaluated but not included)
- ➤ Increase in Water Supply: The increase is attributed to all the R&R projects and is based on the difference between the total pumpage for the 400K Base with Scenario 5 total pumpage before applying the reductions due to CPM.
- Costs Estimates:
- Capital:
- · Recharge, water transfer, and recirculation facilities
- Connections to distribution system at 50 percent of the outside water supply rate.
- O&M: Based on average flow of water through the facilities
- Water Purchased (Guadalupe River at Comfort) Test
- > Tests
  - All baseline pumpage was set to a multiplier of 1.00. Municipal pumpage was increased above the baseline until the number of months with average flow from Comal Springs being less than 60 cfs was the same as during the 400K Base conditions. The total was 92 months.

## Flux for Sustained Yield Simulations (Minimum Flow from Comal Springs is 60 cfs) (acft/year)

	Baseline with 95,000 irrigation transfers	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Pumpage					
Total	272,538	389,642	405,139	450,411	482,454
Change		117,104	132,601	177,873	209,916
Recirculation					
Lake Dunlap to Medina County	0	131,617	127,452	115,371	102,588
Lake Dunlap to Uvalde County		53,269	49,031	38,680	31,263
Lake Dunlap to Bexar County		45,406	43,280	35,877	28,964
Lake Dunlap to Cibolo Creek		0	2,176	12,947	21,655
Uvalde County Transfer to Cibolo Creek		0	0	8,732	14,069
Uvalde County Transfer to W. Bexar County		0	0	0	14,069
Springflow					
Comal Springs	216,168	262,464	253,896	224,376	200,837
All Springs except Leona	337,021	461,286	445,504	397,121	360,574
Leona Springs	20,854	28,419	27,917	25,871	23,477

## Flux for 400K Base Simulations (Number of Months of Flow Below 60 cfs at Comal Springs is Unchanged) (acft/year)

	Baseline with 95,000 irrigation transfers	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Pumpage					
Total	412,312	512,323	524,703	567,667	599,226
Change		100,011	112,391	155,355	186,912
Recirculation					
Lake Dunlap to Medina County	0	92,239	79,936	67,882	59,062
Lake Dunlap to Uvalde County	0	27,920	26,668	20,710	17,694
Lake Dunlap to Bexar County	0	25,272	23,583	17,111	12,704
Lake Dunlap to Cibolo Creek	0	0	11,902	54,331	64,389
Uvalde County Transfer to Cibolo Creek	0	0	0	39,458	45,118
Uvalde County Transfer to W. Bexar County	0	0	0	0	45,118
Springflow					
Comal Springs	126,540	169,800	165,600	140,424	122,124
All Springs except Leona	224,963	321,655	314,180	278,876	254,186
Leona Springs	16,194	22,879	22,089	18,212	14,523

## Flux for 400K Base, Scenario 5 Simulations (Number of Months of Flow Below 60 cfs at Comal Springs is Unchanged) (acft/year)

	Baseline	Scenario 5
Pumpage		
Total	412,312	639,392
Change		227,080
Recirculation		
Lake Dunlap to Medina County	0	56,466
Lake Dunlap to Uvalde County	0	16,861
Lake Dunlap to Bexar County	0	12,509
Lake Dunlap to Cibolo Creek	0	69,711
Uvalde County Transfer to Cibolo Creek	0	48,190
Uvalde County Transfer to W. Bexar County	0	48,190
Springflow		
Comal Springs	139,466	116,217
San Marcos Springs	95,955	124,127
Lake Duniap		
Blanco Pumpover		33,582
Available Unappropriated flow for R&R		70,506
Enhanced flow from Comal Springs		-23,195
Enhanced flow from Comal Springs available for R&R		2,553



Recharge and Recirculation Alternative Regional Water Plan Simulated Comal Springs Discharge (Scenario 5)



Recharge and Recirculation Alternative Regional Water Plan Simulated San Marcos Springs Discharge (Scenario 5)



Recharge and Recirculation Alternative Regional Water Plan Simulated Edwards Aquifer Levels

Recharge and Recirculation Alternative Regional Water Plan Additional Edwards Aquifer Wells



Recharge and Recirculation Alternative Regional Water Plan Additional Carrizo Groundwater Pumpage

#### Drawdown in Southern Bastrop County



### Drawdown in Northern Gonzales County -20 Note: Drawdown shown is associated with this alternative plan and is in addition to any drawdown associated with projected Additional Drawdown (ft) -40 local demand -60 Bastrop Fayette -80 Caldwell -100 -120 2000 2010 2020 2030 2040 2050 Year

Recharge and Recirculation Alternative Regional Water Plan — Carrizo Aquifer





Recharge and Recirculation Alternative Regional Water Plan Streamflow Frequency Comparison







# Guadalupe River @ Saltwater Barrier - Median Streamflow Comparison





Recharge and Recirculation Alternative Regional Water Plan Streamflow Frequency Comparison

\$3.07

\$1,000

**Alternative Plan** 



## Unit Cost by Decade Comparison of Alternative Regional Water Plans



## 2030 Average Unit Cost Comparison of Alternative Regional Water Plans



# **Comal Springs**



# **San Marcos Springs**



# Pumpage At or Above 412,000 Acft/yr



HDR

# **County Comparisons of Months in Drought Contingency**



**Alternative Plan** 

HDR.

# Median Annual Streamflow Comparison - Guadalupe River @ Cuero



# Median Annual Streamflow Comparison - San Antonio River @ Falls City



HR

Plan Comparison

# Median Annual Streamflow Comparison - Guadalupe R. Saltwater Barrier



# Mean Annual Streamflow Comparison - Nueces River @ Estuary



ЮR

Plan Comparison