



### 2016 EAHCP Water Quality Work Group Meeting #4 May 11, 2016





# Public comments or questions?

### At Meeting #3, we...

- Approved Alternative #3, with additions
- Agreed on Nutrients of Concern nitrate, ammonia, and soluble reactive phosphorus (SRP)
- Requested to look into possibly reducing detection limits for SRP
  - Before action taken, WG requested discussion of
    - Breakdown of results and table showing gradation of costs as detection limit is decreased
    - Staff will formulate a recommendation

### **Operational Guidelines**

/Steward dollars (no increase in budget)...... yes? 🗆 🛛 no? 🗆

Śpecies-driven ..... no? 🗆

### Points to Consider

- Does it eliminate duplication?
- Does it enable long-term trend analysis?
- Does it integrate data collected by the EAHCP water quality monitoring program, EAHCP biological monitoring program and other monitoring programs?
- Does it contribute to an understanding of the effectiveness of conservation measures?
- Does it consider point and non-point sources?
- Does it demonstrate an awareness of strategies employed by others?

### Recap: Work Group Approval of Alternative #3

### **Goal & Approach**

Maintain existing monitoring, where appropriate, to build the baseline;

Continue proactive monitoring program;

Reduce frequency where prudent; &

Collect new data to determine impacts.

### **Recap: Work Group Approval of Alternative #3**

| WQ Program Sampling | <u>Revised</u> WQ Program Sampling - Alternative #3                                                                                                                                                                                 |                                                                                                                                                                                       |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Methods             | Odd Years – 2017                                                                                                                                                                                                                    | Even Years - 2018                                                                                                                                                                     |  |  |  |  |
| Surface water       | Remove                                                                                                                                                                                                                              | Remove                                                                                                                                                                                |  |  |  |  |
| Sediment            | Remove                                                                                                                                                                                                                              | Continue even year-sampling;<br>Reduce to once/year                                                                                                                                   |  |  |  |  |
| Real-time           | Add +1 station per system                                                                                                                                                                                                           | Add +1 station per system                                                                                                                                                             |  |  |  |  |
| Stormwater          | Reduce to one sampling/year<br>Test only IPMP-listed chemicals &<br>atrazine; add two samples to the<br>rising limb of the hydrograph for<br>a total of 5 samples/location;<br>priority given to locations at<br>tributary outflows | Reduce to one sampling/year;<br>add two samples to the rising<br>limb of the hydrograph for a total<br>of 5 samples/location; priority<br>given to locations at tributary<br>outflows |  |  |  |  |
| PDS                 | Add PPCP membrane;<br>PPCP only at bottom of channel                                                                                                                                                                                | Add PPCP membrane;<br>PPCP only at bottom of channel                                                                                                                                  |  |  |  |  |
| Groundwater         | Remove                                                                                                                                                                                                                              | Remove                                                                                                                                                                                |  |  |  |  |
| Fish tissue         | Conducted once/year<br>in odd years                                                                                                                                                                                                 | Not conducted<br>in even years                                                                                                                                                        |  |  |  |  |

Nutrient Sampling Through EAHCP & Other Programs Within the Systems

### NAS <u>Report 1</u> and <u>NAS WG</u> Recommendations

### NAS Report 1 NAS Work Group EAHCP Staff

Enhanced sampling for nutrients is recommended. Determining whether enhanced sampling for nutrients...is needed.

<u>NAS' recommendation:</u> "If the detection limits for phosphorus species, NO3/NO2, and total nitrogen were **reduced to 2, 10, and 50 micrograms/ liter, respectively**...this would enable identification of nutrient concerns in both spring systems." Recap: Nutrients of Concern within Spring Systems

At the April 27 meeting, the Work Group agreed that the following three nutrients were the only priority 3 that EAHCP needed to sample:

- Nitrate is of concern because it is a readily available plant nutrient
- Ammonia is of concern because it is readily converted to NO<sub>3</sub>...can also be toxic to aquatic organisms (0.6 2.0 mg/l).
- Soluble reactive phosphorus (SRP) is of concern because it is the limiting nutrient in the San Marcos and Comal aquatic ecosystems.

[Source: Association Between Nutrients, Habitat, and the Aquatic Biota in Ohio Rivers & Streams; Ohio EPA Technical Bulletin MAS/1991-1-1]

### **Nutrient Sampling Through EAHCP & Other Programs** Current Detection Limits:

|   | Analytes | Results                                                 | EAHCP <u>WQ</u> |                              | AHCP WQ EAHCP BioMP |                              | CRP     |                                        |
|---|----------|---------------------------------------------------------|-----------------|------------------------------|---------------------|------------------------------|---------|----------------------------------------|
|   |          | Detection level<br>comments                             | Tested?         | Method<br>Detection<br>Limit | Tested?             | Method<br>Detection<br>Limit | Tested? | Ambient<br>Water<br>Reporting<br>Limit |
| / | Nitrate  | Minimum<br><b>110-180 µg/L</b><br>CS, SM                | Yes             | 25<br>µg/L                   | Yes                 | 50<br>µg/L                   | Yes     | 50<br>µg/L                             |
| / | Ammonia  | Ammonia<br>detection<br>limits meet<br>TCEQ<br>approval | No              | -                            | No                  | _                            | Yes     | 100<br>µg/L                            |
|   | SRP      | ~95% non-<br>detects                                    | No              | -                            | Yes                 | 50<br>µg/L                   | No      | -                                      |

### Nutrient Sampling – Soluble Reactive Phosphorus

- EAHCP staff consulted with subject matter experts concerning prevailing nutrient conditions within both spring systems
- EAHCP staff determined that setting minimum detection limits for SRP to 3-5 µg/L would also cover the Comal system
- Comal SRP levels tend to be slightly higher than what is found in the San Marcos

### Nutrient Sampling – Soluble Reactive Phosphorus

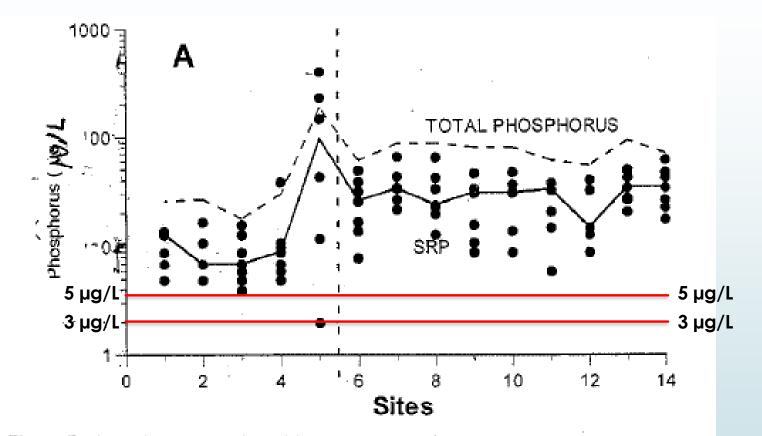
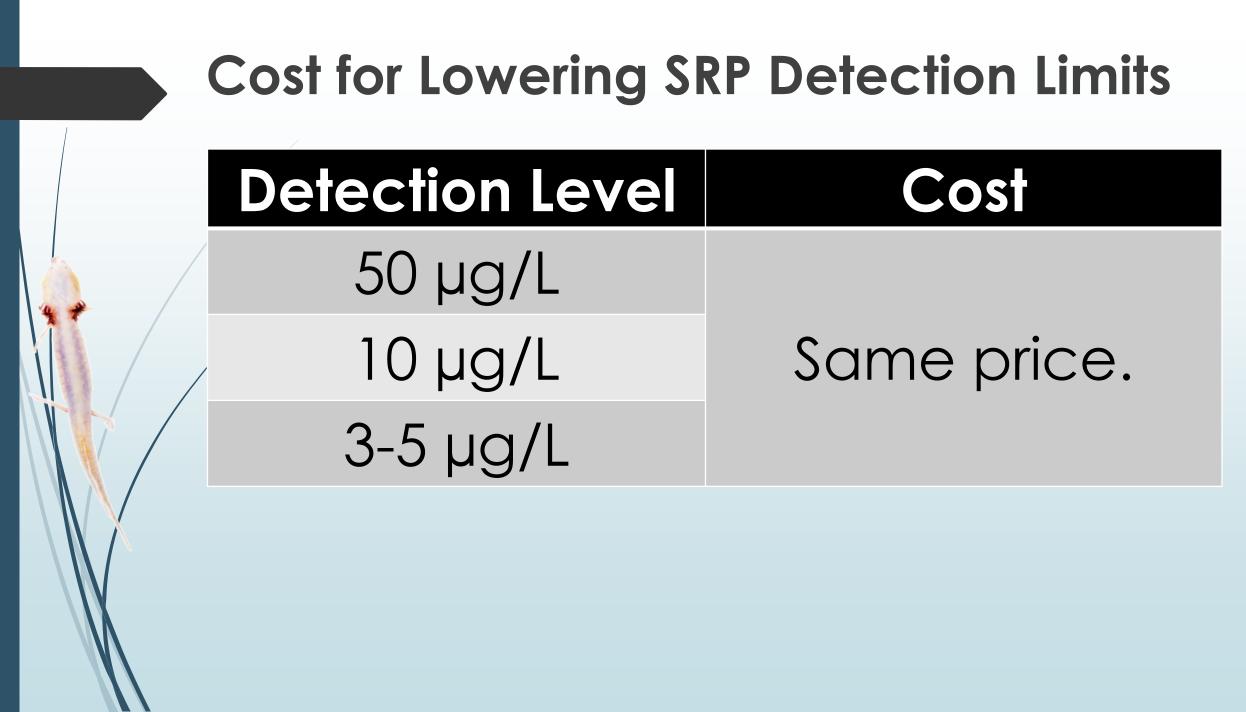




Figure 5. Phosphorus (A), nitrate-N (B), and ammonium-N (C) concentrations on seven dates at sites along the San Marcos River. The vertical dotted line is the confluence with the Blanco River. In A, the points represent SRP concentrations and the solid line is the SRP median concentration. The dotted horizontal line is the median concentration of total phosphorus.

#### Source: Groeger, Brown, Tietjen, & Kelsey, 1997, p. 288



### **EAHCP Staff Recommendation:**

#### Drop nutrient sampling from EAHCP Expanded WQ Monitoring Program.

 Nutrients will continue to be sampled at adequate detection limits through the EAHCP Bio-monitoring program (low-flows) and GBRA's Clean Rivers Program.

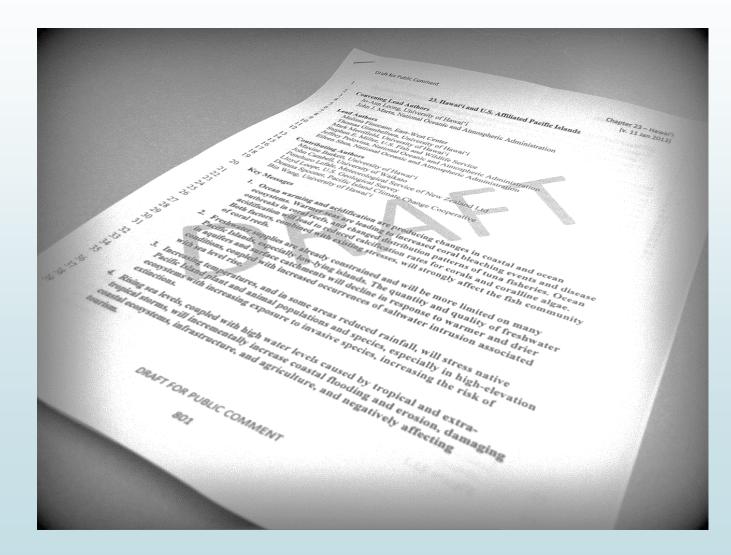
Lower soluble reactive phosphorus (SRP) detection limit within EAHCP Bio-monitoring program (highand low-flows) to 3-5 µg/L to enhance monitoring. Synergies Between the Water Quality and Biological Monitoring Work Groups

## Synergies Discussion

?

## Water Quality Monitoring Program

Biological Monitoring Program


### Possible synergies? Staff recommendations

- 1. Using rapid bio-assessments (EAHCP Bio-Monitoring) to help identify toxic WQ impairments
- 2. Using WQ data from Bio-Monitoring to measure nutrient impairments, such as SRP
- 3. Analyzing data from Water Quality, Biological, EAA Well Sampling & Clean Rivers Program, collectively
- 4. Collecting more real-time water quality data because it is more biologically-relevant
- 5. Requiring monitoring of riparian conditions as a part of Permittees' Work Plans

### Other possible synergies

- 6. Explore the feasibility of coordinating sampling at the same locations and/or times.
- 7. Others?

### **Review Draft Report of the Work Groups**



# Review Draft Report of the Work Groups





### Draft Report – Completed Drafted for Review

#### **Table of Contents**

|                   | Executive Summary                                                                   | 2    |
|-------------------|-------------------------------------------------------------------------------------|------|
| $\checkmark$      | Introduction                                                                        | 3    |
| $\checkmark$      | Basic Operational Principles and Guidelines                                         | 4    |
| $\checkmark$      | Alternatives for a Revised Scope of Work for EAHCP Water Quality Monitoring         | 5    |
| $\checkmark$      | Methodology for Determining Historic Water Quality Conditions in the Spring Systems | s 10 |
| $\mathbf{\nabla}$ | Criteria for Analytical Limits for EAHCP Water Quality Data                         | . 12 |
| $\checkmark$      | Proceduralizing the Regular Review and Analysis of EAHCP WQ Data                    | . 13 |
|                   | National Academy of Sciences Report 1 and NAS Work Group Recommendations            | . 14 |
|                   | Synergies between the Monitoring Work Groups                                        | . 15 |
|                   | Conclusion                                                                          | . 17 |
|                   | References Cited                                                                    | . 18 |
| $\checkmark$      | Appendix A: Charge                                                                  | . 19 |
|                   | Appendix B: Agendas and Meeting Minutes of the WQWG                                 | . 20 |

### Draft Report – Sections in Progress

|   | Table of Contents                                                                   |      |
|---|-------------------------------------------------------------------------------------|------|
|   | Executive Summary                                                                   | 2    |
|   | Introduction                                                                        | 3    |
|   | Basic Operational Principles and Guidelines                                         | 4    |
|   | Alternatives for a Revised Scope of Work for EAHCP Water Quality Monitoring         | 5    |
|   | Methodology for Determining Historic Water Quality Conditions in the Spring Systems | s 10 |
|   | Criteria for Analytical Limits for EAHCP Water Quality Data                         | . 12 |
|   | Proceduralizing the Regular Review and Analysis of EAHCP WQ Data                    | . 13 |
| P | National Academy of Sciences Report 1 and NAS Work Group Recommendations            | . 14 |
| P | Synergies between the Monitoring Work Groups                                        | . 15 |
| P | Conclusion                                                                          | . 17 |
| P | References Cited                                                                    | . 18 |
| P | Appendix A: Charge                                                                  | . 19 |
|   | Appendix B: Agendas and Meeting Minutes of the WQWG                                 | . 20 |

### Draft Report – Next Steps

- Add Scope of Work Alternative 3 presented and discussed today
- Add WQWG NAS Work Group Recommendation discussion
- Add final Work Group final recommendations for Implementing Committee approval and adoption

#### Conclusion

At their final meeting on **INSERT DATE**, 2016, the WQWG unanimously approved this draft report. The WQWG recommends this report to the Implementing Committee as its final deliverable for approval and adoption.



### Next Steps: Water Quality WG

| Meeting                | Tasks                                                                                                            | Dates  | Location                      |
|------------------------|------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|
| #4-Consensus building  | <ul> <li>Achieve consensus on SOW</li> <li>Present final recommendations</li> <li>Review draft report</li> </ul> | May 11 | San Marcos<br>Activity Center |
| #5-Reporting           | Discuss synergy and efficiencies<br>Presentation of final report                                                 | May 20 | San Marcos<br>Activity Center |
|                        |                                                                                                                  |        |                               |
| Review of final report | Task                                                                                                             | Date   | Medium                        |

| Review of final report | Task                                    | Date    | Medium |
|------------------------|-----------------------------------------|---------|--------|
| #1                     | Revised final report will be sent to WG | May 27  | E-Mail |
| #2                     | Deadline for final WG comments          | June 10 | E-Mail |





# **Questions or comments?**





### 2016 EAHCP Water Quality Work Group Meeting #4 May 11, 2016





# **Supplementary Slides**

|              | <u>Current</u> WQ Program |    | <u>Revised</u> WQ Program Sampling - Alternative #3                        |                                                                            |  |  |
|--------------|---------------------------|----|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
|              | Sampling                  |    | <b>Odd Years</b> – 2017                                                    | Even Years - 2018                                                          |  |  |
|              | Surface water             | >  | Remove<br>Collected externally thru CRP<br>Collected internally thru BioMP | Remove<br>Collected externally thru CRP<br>Collected internally thru BioMP |  |  |
|              | Sediment                  |    | Remove                                                                     | Continue even year-sampling;<br>Reduce to once/year                        |  |  |
|              | Real-time                 |    | Add +1 station per system                                                  | Add +1 station per system                                                  |  |  |
|              | Stormwater                |    | Reduce to one sampling/year<br>Test only IPMP-listed chemicals             | Reduce to one sampling/year                                                |  |  |
|              | PDS                       |    | Add PPCP membrane;<br>PPCP only at bottom of channel                       | Add PPCP membrane;<br>PPCP only at bottom of channel                       |  |  |
|              | Groundwater               | \$ | Remove<br>Done through EAA                                                 | Remove<br>Done through EAA                                                 |  |  |
| $\mathbb{N}$ | Fish tissue               |    | Conducted once/year<br>in odd years                                        | Not conducted<br>in even years                                             |  |  |

# Summary:

- Purpose: Surface water sampling provides WQ data for surface waters of each spring system and river reach of concern.
- Results: No PCBs, no organophosphorus pesticides, no herbicides
- No metals detected above Drinking Water Standards (MCLs)
- Of metals detected, selected metals were compared to Aquatic Life Protection standards and found to be significantly less
- VOC, SVOC, and organochlorine pesticides were isolated detections below PCL

- BioMP collects surface water quality at low-flow
- CRP collects surface water quality at frequent, regular intervals in both systems

### Recommendation: Remove from Program

### CRP Detailed Parameters (2016-2017 GBRA QAPP)

| Table A7.1 - 2016-2017 QAPP<br>Parameters | Units         | Method                    | Paramete<br>r Code | AWRL | LOQ  | LOQ Check<br>Sample<br>%Rec | Precision<br>(RPD of<br>LCS/LCSD) | Bias<br>%Rec. of<br>LCS | Lab      |
|-------------------------------------------|---------------|---------------------------|--------------------|------|------|-----------------------------|-----------------------------------|-------------------------|----------|
| Specific Conductance                      | u\$/cm        | SM 2510 B                 | 00095              | NA   | NA   | NA                          | NA                                | NA                      | GBRA**** |
| Residue, Total Nonfiltrable (Mg/L)        | mg/L          | SM 2540 D.                | 00530              | 5    | ]*** | NA                          | NA                                | NA                      | GBRA**** |
| Turbidity,lab Nephelometric               | NTU           | SM 2130 B.                | 82079              | 0.5  | 0.5  | NA                          | NA                                | NA                      | GBRA**** |
| Sulfate (Mg/L As So4)                     | mg/L          | EPA 300.0 Rev. 2.1 (1993) | 00945              | 5    | 1    | 70-130                      | 20                                | 80-120                  | GBRA**** |
| Chloride (Mg/L As Cl)                     | mg/L          | EPA 300.0 Rev. 2.1 (1993) | 00940              | 5    | 1    | 70-130                      | 20                                | 80-120                  | GBRA**** |
| Chlorophyll-a Ug/L                        | ug/L          | SM 10200- H4              | 32211              | 3    | 1    | NA                          | 20                                | 80-120                  | GBRA**** |
| Pheophytin-a Ug/L                         | µg/L          | SM 10200- H4              | 32218              | 3    | 1    | NA                          | NA                                | NA                      | GBRA**** |
| E. coli                                   | MPN/100<br>mL | Colilert-18               | 31699              | 1    | 1    | NA                          | 0.5**                             | NA                      | GBRA     |
| Nitrogen, Ammonia, Total (Mg/L as N)      | mg/L          | SM 4500-NH3 D.            | 00610              | 0.1  | 0.1  | 70-130                      | 20                                | 80-120                  | SARA     |
| Nitrogen, Ammonia, Total (Mg/L As N)      | mg/L          | EPA 350.1 Rev. 2.0 (1993) | 00610              | 0.1  | 0.1  | 70-130                      | 20                                | 80-120                  | GBRA**** |
| Hardness, Total (Mg/L As Caco3)*          | mg/L          | SM 2340 C.                | 00900              | 5    | 5    | NA                          | 20                                | 80-120                  | GBRA**** |
| Nitrate Nitrogen, Total (Mg/L As N)       | mg/L          | EPA 300.0 Rev. 2.1(1993)  | 00620              | 0.05 | 0.05 | 70-130                      | 20                                | 80-120                  | GBRA**** |
| Phosphorus, Total, Wet (Mg/L As P)        | mg/L          | EPA 365.3                 | 00665              | 0.06 | 0.02 | 70-130                      | 20                                | 80-120                  | GBRA**** |
| Nitrogen, Kjeldahl, Total (Mg/L As N)     | mg/L          | EPA 351.2 Rev. 2 (1993)   | 00625              | 0.2  | 0.2  | 70-130                      | 20                                | 80-120                  | GBRA**** |
|                                           |               |                           |                    |      |      |                             |                                   |                         |          |

|                       | Surface (Base Flow) Parameters                                                                         | EAHCP WQ | EAHCP BioMP<br>Low flows     | CRP                                             |
|-----------------------|--------------------------------------------------------------------------------------------------------|----------|------------------------------|-------------------------------------------------|
|                       | <u>Current</u>                                                                                         | Tested?  | Tested?                      | Tested?                                         |
| Chemistry             | "General chemistry" (CaCO $_3$ , Cl, SO $_4$ , Br, Fl, TDS, TSS, Ca, Mg, Na, K, Si, Sr, CO $_3$ )      | Yes      | Only TSS & CaCO <sub>3</sub> | Only CaCO <sub>3</sub> , Cl,<br>SO <sub>4</sub> |
|                       | "Conventional parameters" – <i>not otherwise subsumed</i><br>(Conductance, Total Nonfiltrable Residue) | No       | No                           | Yes                                             |
| 0                     | Field parameters (DO, pH, Cond., Temp, Turbidity)                                                      | Yes      | Yes                          | Yes                                             |
| ns                    | VOCs & SVOCs                                                                                           | Yes      | No                           | Νο                                              |
| ge                    | Organochlorine Pesticides                                                                              | Yes      | No                           | No                                              |
| itho                  | Polychlorinated Biphenyls (PCBs)                                                                       | Yes      | No                           | No                                              |
| /Pc                   | Organophosphorus Pesticides                                                                            | Yes      | No                           | No                                              |
| -<br>-<br>-           | Herbicides                                                                                             | Yes      | No                           | No                                              |
| Ioxics/PCPP/Pathogens | Metals (Al, Sb, As, Ba, Be, Cd, Cr (total), Cu, Fe, Pb, Mn, Hg, Ni, Se, Ag, Tl, and Zn)                | Yes      | No                           | No                                              |
| ĬXO                   | Caffeine                                                                                               | Yes      | No                           | No                                              |
| _                     | Bacteria (E. coli)                                                                                     | Yes      | No                           | Yes                                             |
|                       | Nitrate Nitrogen (NO <sub>3</sub> )                                                                    | Yes      | Yes                          | Yes                                             |
|                       | Ammonia Nitrogen                                                                                       | No       | No                           | Yes                                             |
|                       | Ammonium                                                                                               | No       | Yes                          | No                                              |
|                       | Total Kjeldahl Nitrogen (TKN)                                                                          | Yes      | No                           | Yes                                             |
| Ś                     | Total Nitrogen                                                                                         | No       | Yes                          | Νο                                              |
| utrients              | Potassium (K)                                                                                          | Yes      | No                           | No                                              |
| Utr                   | Soluble Reactive Phosphorus                                                                            | No       | Yes                          | No                                              |
| Z                     | Total Phosphorus                                                                                       | Yes      | Yes                          | Yes                                             |
|                       | Chlorophyll-a                                                                                          | No       | No                           | Yes                                             |
|                       | Pheophytin                                                                                             | No       | No                           | Yes                                             |
|                       | Total Organic Carbon (TOC)                                                                             | Yes      | No                           | No                                              |
|                       | Dissolved Organic Carbon (DOC)                                                                         | Yes      | No                           | No                                              |

Current **Parameters** Analyzed in EAHCP WQ Monitoring, EAHCP **Biological** Monitoring and GBRA's **Clean Rivers** Program

### EAHCP Surface WQ Parameters Suspended as Part of Alt. 3

|  | Surface (Base Flow) Parameters Parameters Dropped |                                                                                           | EAHCP WQ | EAHCP BioMP<br>Low flows | CRP     | <u>Justification</u>                                             |  |
|--|---------------------------------------------------|-------------------------------------------------------------------------------------------|----------|--------------------------|---------|------------------------------------------------------------------|--|
|  |                                                   |                                                                                           | Tested?  | Tested?                  | Tested? | Monitored:<br>Storm,                                             |  |
|  | Chem                                              | "General chemistry"<br>(TDS, Br, Fl, Ca, Mg, Na, K, Si, Sr, CO <sub>3</sub> )             | Yes      | No                       | No      | Sediment, &<br>EAA Spring<br>Sampling                            |  |
|  |                                                   | VOCs & SVOCs                                                                              | Yes      | No                       | No      |                                                                  |  |
|  | gens                                              | Organochlorine Pesticides                                                                 | Yes      | No                       | No      | Monitored:                                                       |  |
|  | atho                                              | Polychlorinated Biphenyls (PCBs)                                                          | Yes      | No                       | No      | Stormwater,                                                      |  |
|  | P/P(                                              | Organophosphorus Pesticides                                                               | Yes      | No                       | No      | Sediment,<br>EAA Spring<br>Sampling,<br>*PDS (*only a<br>subset) |  |
|  | /PCF                                              | Herbicides                                                                                | Yes      | No                       | No      |                                                                  |  |
|  | Toxics/PCPP/Pathogens                             | Metals (Al, Sb, As, Ba, Be, Cd, Cr (total), Cu, Fe,<br>Pb, Mn,Hg, Ni, Se, Ag, Tl, and Zn) | Yes      | No                       | No      |                                                                  |  |
|  |                                                   | Caffeine                                                                                  | Yes      | No                       | No      |                                                                  |  |
|  | Nutrient                                          | Total Organic Carbon (TOC)                                                                | Yes      | No                       | No      | Drinking WQ;<br>EAA Spring<br>Sampling                           |  |
|  | Z                                                 | Dissolved Organic Carbon (DOC)                                                            | Yes      | No                       | No      | Drinking WQ                                                      |  |

### **Tissue sampling** Summary:

- Purpose: Tissue sampling detects ecologically relevant water contamination; provides index to the extent of penetration to the biota
- Not currently conducted through EAHCP
- Not required by EAHCP

**Recommendation:** Replaces sediment sampling in odd years.

- Obtain advice from Permittees and subject matter experts to establish methodologies for sampling
- Likely 2 locations per system; 3 species per system

### **Sediment sampling** Summary:

Purpose: Sediment sampling helps ascertain potential effects on species via direct or indirect exposure

#### Results:

- Total PAH (SM), lead (SM), cadmium (C), chlordane (SM) were only detections above Probable Effect Concentration
- No EAHCP biological results to date suggest that the Covered Species are at-risk due to chemicals in the habitat

**Recommendation:** Continue; improve efficiency by sampling once during even years

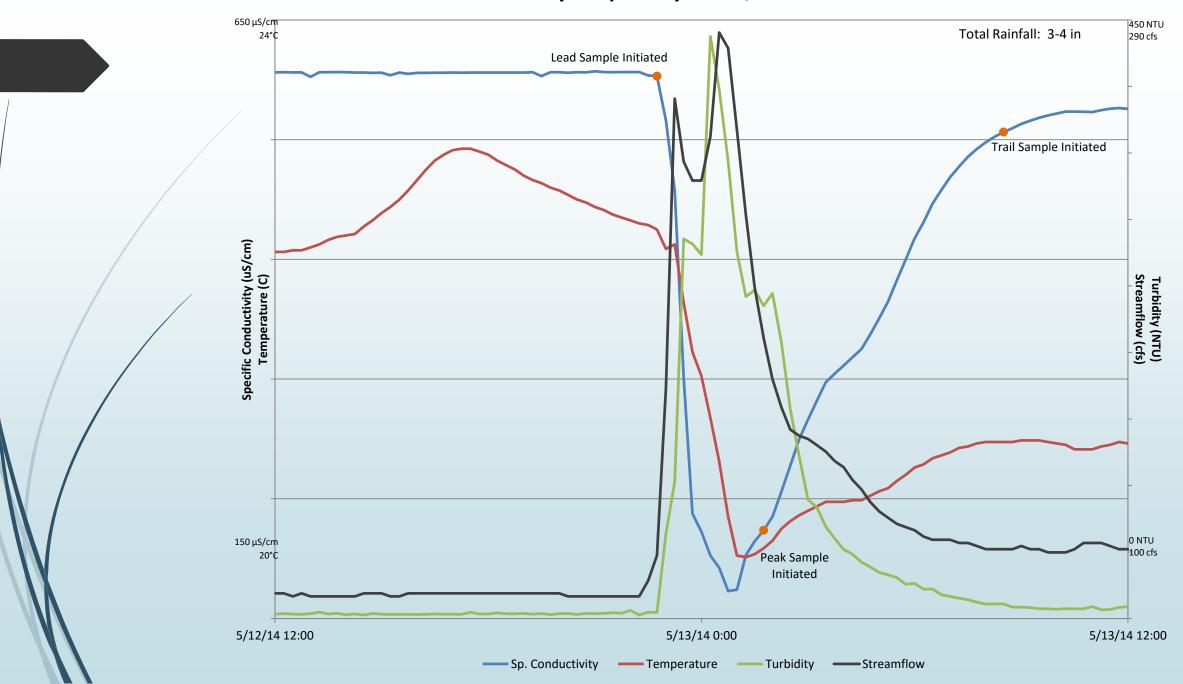
### **Real-time monitoring** Summary:

- Purpose: Real-time monitoring provides a valuable source of continuous information that is highly ecologically relevant
- Results: Field parameters collected every 15 minutes: DO, conductivity, turbidity, temp, pH over 3 years

### **Recommendation:** Add 1 station per system

Obtain advice from Permittees and subject matter experts to establish additional locations

### **Stormwater Sampling** Summary:


- Purpose: Stormwater sampling assesses potential contaminants present in storm surface water runoff.
- No EAHCP biological results to date suggest the Covered Species are at-risk due to chemicals in the habitat

- Results:
  - Only one detection for arsenic (SM), below the Aquatic Life Protection criteria
  - One detection in SM for chlordane (SM) above chronic criterion for Aquatic Life Protection

# **Recommendation:** Continue and improve efficiency by sampling once a year.

- Alternate IPMP chemical and full suite analysis every other year
- IPMP sampling not required by EAHCP
- Obtain advice from subject matter experts to establish parameter analysis

San Marcos Storm Water Quality Graph May 12-13, 2014



### **Passive diffusion sampling** Summary:

Purpose: PDS sampling measures trace organic constituents in the systems that may indicate more frequent or robust testing regimes Results: Only tetrachloroethene was commonly detected; chloroform had a few detections

#### **Recommendation:** Continue PDS

- Add PPCP membrane not required by EAHCP
- Membrane at bottom; EAA samples spring orifices for PCPPs
- Obtain advice from subject matter experts and published materials to ensure proper and prioritized parameter analysis

### **Groundwater sampling** Summary:

- Purpose: Groundwater sampling assists the EAHCP in detecting movement of bad water line during critical lowflow periods
  - Duplication of efforts within EAA; existing programs satisfy intent of EAHCP sampling

### **Recommendation:** Remove from Program

### Comparison of EAHCP vs. EAA Spring/Well Sampling

#### EAHCP Well Sampling Procedure

3 per system - If total springflow at Comal Springs < 30 cfs, three wells will be sampled for DO, conductivity, pH, and temp

3 per system - If total springflow at Comal Springs < 20 cfs, additional parameters are added, which include nutrients, TDS, & TOC

3 per system - If total springflow at San Marcos Springs < 50 cfs, three wells will be sampled for DO, conductivity, pH, and temp

3 per system - If total springflow at San Marcos Springs < 30 cfs, additional parameters are added, which include nutrients, TDS, & TOC

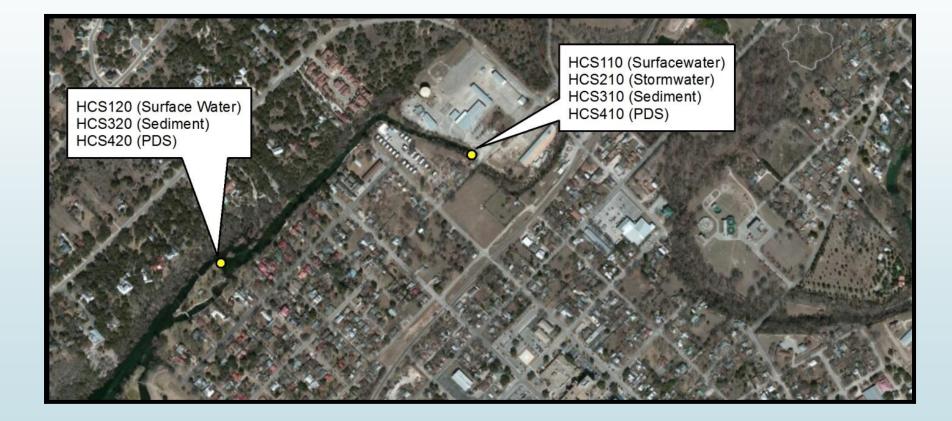
#### EAA Spring & Well Sampling Procedure

Monthly sampling of Comal and San Marcos Springs

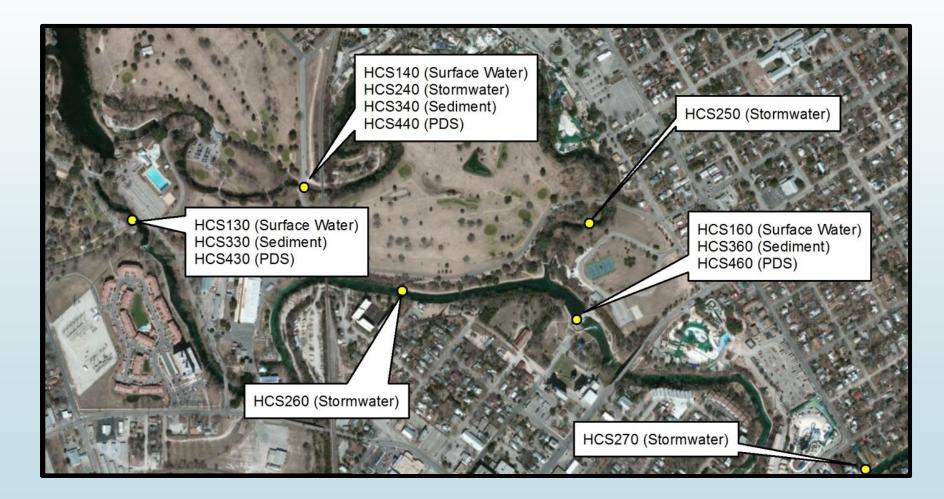
- Triggered by Critical Period, Stage 1 (<660 MSL 10-day rolling average)
- Analyzed for full suite

Episodic geophysical logging and resistivity tool to observe changes in the vertical location of the freshwater/saline water interface (during extreme low flows)

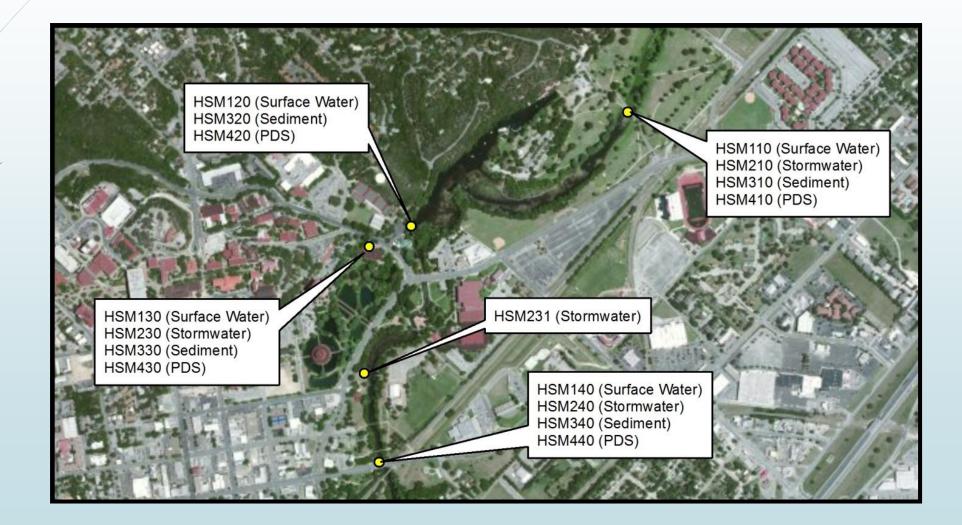
- DX-68-23-304 (LCRA Well near Comal Springs)
- LR-67-09-110 (SWT Farms Well near San Marcos Springs)


Annual sampling of 60 – 80 wells across the EAA jurisdiction region - Analyzed for full suite, not DOC or TKN

Quarterly sampling at key wells across the region


- Four to five wells started in August 2014
  - DX-68-23-316 (Loop 337 Well in Comal County)
  - LR-67-01-828 (Artesian Well in Hays County)
  - LR-67-09-105 (Hunter Road Well in Hays County)
- Analyzed for full suite, not DOC or TKN

Logistics such as water depths, may determine the feasibility of sampling wells closet to the springs during ultra low flow conditions at the springs


### Sample Locations Comal Springs: 10 and 20



### Sample Locations Comal Springs: 30 - 70



### Sample Locations San Marcos Springs: 10 - 40



### Sample Locations San Marcos Springs: 50 - 70

